期刊文献+

中文医学知识图谱CMeKG构建初探 被引量:58

Preliminary Study on the Construction of Chinese Medical Knowledge Graph
下载PDF
导出
摘要 医学知识图谱是智慧医疗应用的基石,可以为机器阅读理解医学文本、智能咨询、智能诊断提供知识基础。现有的医学知识图谱从规模化、规范化、体系性、形式化等方面还不足以满足智慧医疗应用的需求。此外,对复杂医学知识的精准描述更是构建医学知识图谱面临的重要挑战。针对上述问题,该文利用自然语言处理与文本挖掘技术,以人机结合的方式研发了中文医学知识图谱第一版CMeKG 1.0(Chinese Medical Knowledge Graph)。CMeKG 1.0的构建参考了ICD-10、ATC、MeSH等权威的国际医学标准术语集以及规模庞大、多源异构的临床路径指南、临床实践、医学百科等资源,覆盖了疾病、药物和诊疗技术,包括100余万个医学概念关系的实例。该文综述了CMeKG 1.0构建过程中的描述体系、关键技术、构建流程以及医学知识描述等相关问题,希望为医学领域知识图谱的构建与应用提供一些参考。 The medical knowledge graph is the cornerstone of intelligent medical applications.The existing medical knowledge graphs are not enough from the perspectives of scale,specification,taxonomy,formalization as well as the precise description of the knowledge to meet the needs of intelligent medical applications.We apply natural language processing and text mining techniques with a semi-automated approach to develop the Chinese Medical Knowledge Graph(CMeKG 1.0).The construction of CMeKG 1.0 refers to the international medical coding systems such as ICD-10,ATC,and MeSH,as well as large-scale,multi-source heterogeneous clinical guidelines,medical standards,diagnostic protocols,and medical encyclopedia resources.CMeKG covers types such as diseases,drugs,and diagnosis/treatment technologies,with more than 1 million medical concept relationships.This paper presents the description system,key technologies,construction process and medical knowledge description of CMeKG 1.0,serving as a reference for the construction and application of knowledge graphs in the medical field.
作者 奥德玛 杨云飞 穗志方 代达劢 常宝宝 李素建 昝红英 BYAMBASUREN Odmaa;YANG Yunfei;SUI Zhifang;DAI Damai;CHANG Baobao;LI Sujian;ZAN Hongying(Key Laboratory of Computational Linguistics,Ministry of Education,Peking University,Beijing 100871,China;Peng Cheng Laboratory,Shenzhen,Guangdong 518055,China;School of Information Engineering,Zhengzhou University,Zhengzhou,Henan 450001,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第10期1-9,共9页 Journal of Chinese Information Processing
基金 国家重点研发计划(2017YFB1002101) 国家自然科学基金(61772040,61751201)
关键词 知识图谱 智慧医疗 知识描述体系 知识提取 knowledge graph intelligent medical treatment knowledge description system knowledge extraction
  • 相关文献

参考文献5

二级参考文献48

  • 1陈悦,刘则渊.悄然兴起的科学知识图谱[J].科学学研究,2005,23(2):149-154. 被引量:820
  • 2朱建平.中医术语规范化与中医现代化国际化[J].中华中医药杂志,2006,21(1):6-8. 被引量:60
  • 3曹莉,韩佩玉,陈颖,雍小嘉,蒋永光.中医药一体化语言系统中语义关系的探讨[J].时珍国医国药,2006,17(3):444-445. 被引量:4
  • 4Tong Ruan, Yeli Lin, Haofen Wang, et al. A multi - strategy learning approach to competitor identification [ J ]. JIST, 2014, 8943 : 197 - 212.
  • 5Bizer, Christian and Andy Seaborne. D2RQ -treating non - RDF databases as virtual RDF graphs [ C ]. Hiroshima: Pro- ceedings of the 3rd International Semantic Web Conference (ISWC2004), 2004.
  • 6S Amit. Introducing the Knowledge Graph: things, not Strings [ EB/OL ]. [ 2015 - 12 - 20 ]. https: // googleblog, blogspot, com/2012/O5/introducing - knowledge - graph - things - not. html.
  • 7S Auer, C Bizer, G Kobilarov, et al. DBpedia: a nucleus for a web of open data [ C]. Proc. of the 6th Int. The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference, 2007:722-735.
  • 8F M Suchanek, G Kasneci, G Weikum. YAGO: a core of semantic knowledge unifying wordNet and wikipedia [ C ]. Proceedings of the 16th International Conference on World Wide Web, 2007 : 697 - 706.
  • 9Hoffart J, Suchanek F M, Berberich K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell [M]. Essex, UK: Elsevier Sci- ence Publishers Ltd, 2013:28 -61.
  • 10J Biega, E Kuzey, F M Suchanek. Inside YAGO2s: a transparent information extraction architecture [ C ]. New York: Proc of the 22th International Conference on World Wide Web, 2013 : 325 -328.

共引文献224

同被引文献470

引证文献58

二级引证文献306

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部