期刊文献+

基于Gate-ResNet-D模型的远程监督关系提取方法 被引量:2

Gate-ResNet-D for Relation Extraction with Distant Supervision
下载PDF
导出
摘要 在实体关系抽取任务中,通常采用远程监督(distant supervision,DS)数据集,远程监督方法能通过大规模语料库自动标注数据来扩张数据集,但这无疑会使数据集充满大量的噪声。为此,该文将深度残差网络(deep residual network,ResNet)应用到关系提取的远程监督数据集上,通过加深网络层数来提高模型降噪能力。同时,提出了Gate模块,有效提高了深度残差网络的性能。该模块可以学习到每个特征通道的重要性,通过权重增强或抑制各个特征通道的比重,从而防止过拟合。另外,为了进一步解决数据集降噪问题,还提出了一种双池化层的池化层新方案。实验结果表明所提方法相比于目前效果较好的PCNN+ATT模型,在准确率和召回率上都有3%左右的提升。 In the entity relationship extraction task,the distant supervision data set with substantial noise is often used.This paper applies ResNet to the distant supervision data set of relation extraction,to exploit its denoising ability by deepening the network.This paper also proposes a Gate module that can effectively improve the performance of deep residual networks,which can learn the importance between each feature channel.In addition,in order to further reduce the noise,this paper also proposes a new pooling layer called double pooling layer.The experimental results show that the proposed method achieves an improvement of 3%in precision and recall rate compared with the PCNN+ATT model.
作者 袁祯祺 宋威 陈璟 YUAN Zhenqi;SONG Wei;CHEN Jing(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China;Engineering Research Center of Internet of Things Technology Applications of Ministry of Education,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第10期57-63,共7页 Journal of Chinese Information Processing
基金 江苏省青年科学基金(BK20150159) 国家自然科学基金(61673193) 中国博士后科学基金(2017M621625) 江苏省自然科学基金(BK20181341)
关键词 实体关系提取 远程监督 深度残差网络 relationship extraction distant supervision deep residual network
  • 相关文献

参考文献2

二级参考文献77

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2Big data. Nature, 2008, 455(7209): 1-136.
  • 3Dealing with data. Science,2011,331(6018): 639-806.
  • 4Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 5Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 6Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 7Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 8Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 9Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 10Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.

共引文献1659

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部