摘要
关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整体信息。针对该现象,该文综合卷积网络抽取局部特征的优势和循环网络在时序依赖中的建模能力,提出了卷积循环神经网络(convolutional recurrent neural network,CRNN)。该模型分为三层:首先针对关系实例抽取多粒度局部特征,然后通过聚合层融合不同粒度的特征,最后利用循环网络提取特征序列的整体信息。此外,该文还探究多种聚合策略对信息融合的增益,发现注意力机制对多粒度特征的融合能力最为突出。实验结果显示,CRNN优于主流的卷积神经网络和循环神经网络,在SemEval 2010Task 8数据集上取得了86.52%的F1值。
Relation extraction is a challenging task in information extraction,which is used to transform unstructured text into structured data.In recent years,deep learning models such as Convolutional Neural Network and Recurrent Neural Network have been widely used in relation extraction tasks and have achieved good results.To combine the advantages of CNN to extract local features and RNN to model in time series dependence,this paper proposes a convolutional recurrent neural network(CRNN)to extract phrase-level features and multi-granularity phrases for relation instances.The model is divided into three layers.Firstly,multi-granularity local features are extracted for the relation instance,and then the different granularity features are merged through the aggregation layer.Finally,the overall information of the feature sequence is extracted by RNN.In addition,this paper also explores the gains of various aggregation strategies for information fusion,and finds that the attention mechanism is the most prominent for the fusion of different granularity features.The experimental results show that CRNN is superior to state of the art CNN and RNN models with 86.52%of F1 scores on the SemEval 2010 Task 8 dataset.
作者
宋睿
陈鑫
洪宇
张民
SONG Rui;CHEN Xin;HONG Yu;ZHANG Min(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处
《中文信息学报》
CSCD
北大核心
2019年第10期64-72,共9页
Journal of Chinese Information Processing
基金
国家自然科学基金(61672367,61672368)
国家重点研发计划(2017YFB1002104)
关键词
关系抽取
卷积神经网络
循环神经网络
聚合策略
注意力机制
relation extraction
convolutional neural network
recurrent neural network
aggregation strategy
attention mechanism