期刊文献+

基于联合学习的问答情感分类方法 被引量:2

Joint Learning for Sentiment Classification Towards Question-Answering Reviews
下载PDF
导出
摘要 面向问答型评论的情感分类在情感分析领域是一项新颖且极具挑战性的研究任务。由于问答型评论情感分类标注数据非常匮乏,基于监督学习的情感分类方法的性能有一定限制。为了解决上述困境,该文提出了一种基于联合学习的问答情感分类方法。该方法通过大量自然标注普通评论辅助问答情感分类任务,将问答情感分类作为主任务,将普通评论情感分类作为辅助任务。具体而言,首先通过主任务模型单独学习问答型评论的情感信息;其次,使用问答型评论和普通评论共同训练辅助任务模型,以获取问答型评论的辅助情感信息;最后通过联合学习同时学习和更新主任务模型及辅助任务模型的参数。实验结果表明,基于联合学习的问答情感分类方法能较好融合问答型评论和普通评论的情感信息,大幅提升问答情感分类任务的性能。 Sentiment classification towards Question-Answering reviews is a novel and challenging task in sentiment analysis community.However,due to the limited annotation corpus for QA sentiment classification,it is difficult to achieve significant improvement via supervised approaches.To overcome this problem,we propose a joint learning approach for QA sentiment classification,which treats QA sentiment classification as the main task while traditional review sentiment classification as the auxiliary task.In detail,we first encode QA review into a sentiment vector with main task model.Then,we propose an auxiliary task model to learn auxiliary QA sentiment information representation with the help of traditional review.Finally,we update the parameters both in main task model and auxiliary task model simultaneously through joint learning.Empirical results demonstrate the impressive effectiveness of the proposed joint learning approach in contrast to a number of state-of-the-art baselines.
作者 安明慧 沈忱林 李寿山 李逸薇 AN Minghui;SHEN Chenlin;LI Shoushan;LEE Sophia Yat Mei(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China;Department of Chinese&Bilingual Studies,Hong Kong Polytechnic University,Hong Kong 999077,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第10期119-126,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61331011,61375073)
关键词 情感分类 问答文本 联合学习 sentiment classification question-answering text joint learning
  • 相关文献

参考文献4

二级参考文献26

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2权聪敏,赵钊,文福安.基于Lucene的智能答疑系统的研究与实现[J].郑州大学学报(理学版),2007,39(2):46-49. 被引量:7
  • 3Dai Liu-ling, Liu Bin, Xia Yu-ning. Measuring Semantic Similari- ty between Words Using HowNet [C] // International Confe- rence on Computer Science and Information Technology. 2008: 601-605.
  • 4Kamps J, Marx M, Mokken R J, et al. Using WordNet to Mea- sure Semantic Orientations of Adjectives[C]///Proe of LREC- 04, 4th Int Conf on Language Resources and Evaluation. Lis- bon,2004:1115-1118.
  • 5Turney P D. Thumbs Up or Thumbs Down? Semantic Orienta- tion Applied to Unsupervised Classification of Reviews[C]// Proceedings of the 40th Annual Meeting of the Association Computational Linguistics(ACL). 2002:417-424.
  • 6Turney P D, Littman, Michael L. Measuring praise and criti- cism: inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003,21 (4) : 315- 346.
  • 7Takamura H, Inui T, Okumura M. Extracting Semantic Orienta- tion of Words Using Spin Model[C]//Proc. Ann. Meeting of the Assoc. Computational Linguistics. 2005 : 133-140.
  • 8Takamura H, Inui T, Okumura M. Extracting Semantic Orienta- tion of Phrases from Dictionary[C]//Proc. Conf. North Am. Ch. Assoc. for Computational Linguistics. 2007:292-299.
  • 9Yoshida Y, Hirao T, Iwata T, et al. Transfer Learning for Multi- pie-Domain Sentiment Analysis-Identifying Domain Dependent/ Independent Word Polarity[C]//Proceedings of the Twenty- Fifth AAAI Conference on Artificial Intelligence. 2011: 1286- 1291.
  • 10Mladenic D, Grobelnik M. Feature selection for classification based on text hierarchy[C]//Proceedings of the Conference on Automated Learning and Discovery(CONALD-98). 1998.

共引文献14

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部