摘要
考虑边界条件含有特征参数的离散Sturm-Liouville问题-(p(t)Δy(t))+q(t)y(t)=λr(t)y(t),t∈[1,T]Z,b 0y(0)=d 0Δy(0),d 1λy(T+1)=y(T+1),其中[1,T]Z={1,2,…,T},r(t)>0,t∈[1,T]Z,得到了该问题特征值的重数、交错性以及特征函数的振荡性质.
Consider the spectra of a second order discrete Sturm-Liouville problem with eigenparameter dependent boundary condition-(p(t)Δy(t))+q(t)y(t)=λr(t)y(t),t∈[1,T]Z,b 0y(0)=d 0Δy(0),d 1λy(T+1)=y(T+1),where[1,T]Z={1,2,…,T},r(t)>0 for t∈[1,T]Z.The multiplicity and the interlacing properties of eigenvalues,and the oscillation properties of eigenfunctions are obtained.
作者
高承华
吕莉
GAO Cheng-hua;LU Li(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2019年第6期1-5,共5页
Journal of Northwest Normal University(Natural Science)
基金
甘肃省自然科学基金资助项目(18JR3RA084)