期刊文献+

基于粒子滤波算法的车载储能元件SOH预测方法研究 被引量:5

Research on SOH prediction method of vehicle energy storage element based on particle filter algorithm
下载PDF
导出
摘要 储能元件作为无接触网供电城市轨道交通车辆的重要组成元件,其健康状态(SOH)直接决定着列车是否能够安全可靠的运行。将由大量数据拟合得到的双指数经验退化模型和适用于解决非线性复杂系统的粒子滤波算法相结合,对车载储能元件蓄电池SOH预测。结果表明,该算法虽能较好地跟踪蓄电池的容量退化过程,但其精度有待提高,因此,引入遗传算法,利用遗传算法产生新粒子的优势提高预测结果的精度,根据实验结果,遗传粒子滤波算法能更精确地预测出电池健康状态。 As an important component of power supply without overhead contact system for urban rail transit vehicles,energy storage components’state of health(SOH)directly determines whether the train can run safely and reliably.In this paper,the SOH prediction of vehicle-mounted storage energy component storage battery was made by combining the double-exponential empirical degradation model with a large amount of data matching and the particle filter algorithm suitable for solving nonlinear complex systems.The results show that although the algorithm can better track the degradation process of battery capacity,its accuracy needs to be improved.Therefore,the genetic algorithm is introduced to improve the accuracy of prediction results by utilizing the advantage of the genetic algorithm to generate new particles.According to the experimental results,the genetic particle filter algorithm can predict the battery health more accurately.
作者 戴银娟 郭佑民 高锋阳 付石磊 DAI Yinjuan;GUO Youmin;GAO Fengyang;FU Shilei(Mechatronics T&R Institute,Lanzhou Jiaotong University,Lanzhou 730070,China;Engineering Technology Center for Information of Logistics&Transport Equipment,Lanzhou 730070,China;School of Automation and Electrical,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2019年第10期2572-2577,共6页 Journal of Railway Science and Engineering
基金 国家重点研发计划资助项目(2017YFB1201003-20)
关键词 储能元件 SOH 粒子滤波 遗传算法 energy storage component SOH particle filter genetic algorithm
  • 相关文献

参考文献4

二级参考文献45

  • 1薛锋,刘忠,张晓锐.高斯和粒子滤波器及其在被动跟踪中的应用[J].系统仿真学报,2006,18(z2):900-902. 被引量:3
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 4M Sanjeev Andampalam, Simon Maskell, N J Gordon, Tim Clapp. A tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X (02)00569-X), 2002, 50(2): 174-188.
  • 5N J Gordon, D J Salmond, A F M Smith. Novel Approach to Nonlinear/ Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings-F (S0-7803-2914-7), 1993, 140(2): 107-111.
  • 6R V Merwe, A Doucet, Nando De Freitas, E Wan. The Unsented Particle Filter [R]// Technical Report, CUED/F-INPENG/TR 380. UK: Engineering Department, Cambridge University, 2000.
  • 7P M Djuric, J Kotecha, Jiangqui Zhang, Yufei Huang, T Ghirmai, M Bugallo, J Miguez. Particle Filtering [J]. IEEE SIGNAL PROCESSING MAGAZINE (S1053-5888), 2003, 20(5): 19,38.
  • 8Fredrik Gustafsson, Fredrik Gunnrsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Per-Johan Nordlund. Particle filters for positioning, navigation and tracking [J]. IEEE Transaction on Signal Processing (S1053-587X (02)00554-8), 2002, 50(2): 425-437.
  • 9J D Hol. Resampling in Particle Filters [R]// Intership report, LiTH-ISY-EX-ET-0283-2004. Sweden: LinkOping University, 2004.
  • 10R Douc, O Cappe, E Moulines. Comparison of Resampling Schemes for Particle Filtering [J]. Proceedings of 4^th international Symposium on Image and Signal Processing and Analysis (ISPA) (S1845-5921), 2005, 9: 64-69.

共引文献105

同被引文献55

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部