摘要
采用内容分析法,借助ROST Content Mining 6软件对所搜集的北京市亲子旅游网络游记文本进行了特征词分析、语义网络分析、情感分析和可视化研究,探究了亲子游客体验的特征。结果表明:古建筑类和历史文化类景点构成了北京市亲子旅游的核心吸引物,亲子旅游者以目的地和孩子为中心,最关注交通方式、住宿环境和亲子产品三大要素。亲子旅游体验语义网络呈现“核心-次核心-边缘”三层结构,组建起各体验要素的关系体系。北京市亲子旅游的情感体验主要表现为积极情绪和中性情绪,亲子游客的旅游满意度和体验值整体较高。最后,就分析结论提出相关建议,为亲子旅游的管理与经营提供参考。
Based on the data of the online travel notes,the traveling experience of Parent-child tourists in Beijing has been explored using the method of content analysis.The key words,semantic net,emotions and attitudes of Parent-child tourists have been analyzed via the online data.The results showed that the ancient and historical architectures such as the Forbidden City,the Great Wall,and Tiananmen Square constitutes the core attraction of the Parent-child tour in Beijing.Centered with the children-care and traveling spots,the Parent-child tourists have paid their most attention to their transportation,accommodation environment and Parent-child products.This semantic network built by the key words of experience presented a three-tier structure:a core-sub core-edge layer,which constructs a relationship system for whole experiencing elements.For emotional experience,the Parent-child tourists in Beijing mainly reflected a positive or a neutral emotion and provided a high-level of tourism satisfaction and experience value.This research can provide references for the management and operation of parent-child tourism in the future.
作者
安烁
苗红
耿一睿
康凌翔
贾菲
邓慧丽
AN Shuo;MIAO Hong;GENG Yirui;KANG Lingxiang;JIA Fei;DENG Huili(College of Resources and Environment,Ningxia University,Yinchuan 750021,Ningxia,China;College of Economics and Management,Ningxia University,Yinchuan 750021,Ningxiaz,China;Longxian Second Senior Middle School in Shaanxi Province,Longxian 721200,Shaanxi,China;Taian Third Middle School in Shandong Province,Taian 271001,Shandong,China)
出处
《旅游研究》
2019年第6期28-40,共13页
Tourism Research
基金
国家自然科学基金项目“宁夏生态移民生存空间脆弱性评价及其可持续构建”(41461119)
宁夏回族自治区哲学社会科学规划年度项目“基于社交媒体的宁夏全域旅游品牌营销影响力评估研究”(17NXBGL10)
关键词
亲子旅游
游客体验
网络文本
可视化
Parent-child tour
traveling experiences
web text analysis
visualization researches