期刊文献+

2I2C用户流失建模分析 被引量:1

Modeling and Analysis of 2I2C User Loss
原文传递
导出
摘要 2I2C业务是中国联通推出的互联网产品,利用互联网公司的用户优势,通过联通的多触点进行业务推广的一种业务模式。由于缺少精准的维系策略,进入2018年后期,2I2C的用户流失率逐月加大,维系2I2C老用户成为中国联通面临的一个难题。本文围绕此问题进行了深入的大数据分析。根据2I2C产品的特点和用户的行为习惯,运用机器学习的有监督学习的分类算法建立2I2C用户流失的大数据模型,从而助力业务运营侧精准营销。 212C is a newly launched Internet Product which takes the advantage from Internet company users andpromoted by China Unicom‘Muti-touched’characteristic,after China Unicom reformed.However,whenstepped into the latter half of Y2018,Customer Attrition Rate of 212C was increased month by month dueto lack of precise maintenance strategy.Retain the existing customer of 212C becomes a challenge whichChina Unicom confronted.This article takes a deep-going Big Data analysis against this problem.We builda Big Data Model of“212C Customer Attrition Rate”according to the characteristics of 2I2C product andthe behavior of users,also by a classification algorithm with supervised machine learning.Thus,to helpBusiness Operation marketing in a more precise way.
作者 杨洁 Yang Jie(Shanxi Unicom Company,Taiyuan,Shanxi 030006,China)
出处 《科研信息化技术与应用》 2019年第4期82-88,共7页 E-science Technology & Application
关键词 2I2C 流失模型 精准营销 2I2C loss model precision marketing
  • 相关文献

参考文献2

二级参考文献30

  • 1HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 2Mitchell T M.机器学习[M].北京:机械工业出版社,2004.
  • 3Quinlan J R.Induction of Decision Tree[J].Machine Learning,1986(1):81-106.
  • 4Quinlan J R.C4.5:Programs for Machine Learning[M].[s.l.]:Morgan Kaufman,1993.
  • 5Mehta M,Agrawal R,Rissanen J.SLIQ:A Fast and Scalable Classifier for Data Mining[M].US:IBM Almaden Research Center,1996.
  • 6Shafer J C,Agrawal R,Mehta M.SPRINT:A Scalable Parallel Classifier for Data Mining[C]//Proc of the 22nd Int Conf on Very Large Databases.Mumbai(Bombay),India:[s.n.],1996.
  • 7Rastogi R,Shim K.PUBLIC:A Decision Tree Classifier that Integrates Building and Pruning[R].Murray Hill:Bell Laboratories,1998.
  • 8Archer KJ, Kirnes RV, 2008. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. ,52(4):2249-2260.
  • 9Biau G, 2012. Analysis of a random forests model. J. Mach. Learn. Res. , 13: 1063 -1095.
  • 10Breiman L, 2001a. Random forests. Mach. Learn. , 45:5 - 32.

共引文献452

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部