期刊文献+

一种耐高温多层热防护组件结构设计与性能研究 被引量:9

Structure Design and Performance Study of a Multi-Layer Thermal Protection Component with High Temperature Endurance
下载PDF
导出
摘要 研究了由多种功能层材料组成的热防护组件的结构设计方法与热防护性能.利用仿真计算模拟了高温热环境下由不同厚度的面板层材料与隔热层材料组成的热防护组件的热响应行为,并通过石英灯加热考核验证了优化设计的热防护组件的耐温隔热与可重复使用性能.结果表明,致密的面板层材料具有优异的耐温性能,而由气凝胶组成的隔热层材料具有极低的热导率.根据目标环境匹配设计两种功能层材料厚度,可使多层热防护组件具备经最高温度1 600℃的加热考核后,背温仅为118℃的优异耐温隔热性能. The structure design method and thermal protection performance of a multi-layer thermal protection component composed of different functional layers were investigated.A simulation calculation was applied to simulate the thermo-responsive behavior of the component composed of ablator layer and insulation layer materials with different thicknesses.And a quartz lamp heating test was carried out to verify the thermostable performance,insulation ability and reusable property of the optimized component.The results show that,the compact ablator layer material possesses an excellent thermostable performance and the insulation layer material composed of aerogel has an ultra-low thermal conductivity.The multi-layer component,matching the designed thicknesses for the target environment,can go through an 1 600℃heating test with a low back-side temperature of only 118℃.
作者 李健 张凡 张丽娟 李文静 赵英民 LI Jian;ZHANG Fan;ZHANG Li-juan;LI Wen-jing;ZHAO Ying-min(Aerospace Institute of Advanced Materials and Processing Technology,Beijing 100074,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第10期1051-1056,共6页 Transactions of Beijing Institute of Technology
关键词 耐高温 多层 隔热材料 热防护 可重复使用 high temperature endurance multi-layer insulation material thermal protection reusable
  • 相关文献

参考文献2

二级参考文献57

  • 1史丽萍,赫晓东.可重复使用航天器的热防护系统概述[J].航空制造技术,2004,47(7):80-82. 被引量:15
  • 2范华林,杨卫.轻质高强点阵材料及其力学性能研究进展[J].力学进展,2007,37(1):99-112. 被引量:70
  • 3解维华,张博明,杜善义.金属热防护系统设计的有限元分析[J].航空学报,2006,27(5):897-902. 被引量:12
  • 4Freeman J, Delma C, Theodor A, etal. Reusable launch ve- hicle technology program. Acta Astronautica, 1997, 41(8): 777-790.
  • 5Giegerich Marc J. Thermal protection system for all- weather reusable launch vehicles. NASA Conference Pub- lication, 1993. 25-26.
  • 6David Olynick. Trajectory-based thermal protection system sizing for X-33 winged vehicle concept. Journal of Spacecraft and Rockets, 1998, 35(3): 249-257.
  • 7Strauss B, Hulewicz J. X-33 advanced metallic thermal protection system. Advanced Materials & Processed, 1997, 151(2): 55-56.
  • 8Sunil Kumar, Diane Villanueva, Bhavani V. Sankar and Raphael T. Haftka. Probabilistic optimization of inte- grated thermal protection system. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Columbia, Sep. 10-12, 2008.
  • 9Yao Caogen, Lfi Hongjun, Jia Zhonghua, et al. A study on metallic thermal protection system panel for reusable launch vehicle. Acta Astronautica, 2008, 63(1-4): 280-284.
  • 10Nieto A, Kumar A, Lahiri D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow[J]. Carbon, 2014, 67(2): 398-408.

共引文献40

同被引文献128

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部