摘要
组织学病理是临床疾病诊断的金标准。全视野数字切片(whole slide image,WSI)的出现,虽弥补了传统的玻璃切片易损坏、检索困难以及诊断可重复性差的不足,但同时也带来了巨大的工作量。人工智能(artificial intelligence,AI)辅助病理医师的WSI分析,可解决工作效率低,提高诊断的一致性。其中,以深度学习卷积神经网络(convolution neural network,CNN)算法的应用最为广泛。本文综述目前已报道的CNN在WSI图像分析中的应用情况,总结CNN在病理学领域中的发展趋势并作出展望。
Histopathology is still the golden standard for the diagnosis of clinical diseases.Whole slide image(WSI)can make up for the shortcomings of traditional glass slices,such as easy damage,difficult retrieval and poor diagnostic repeatability,but it also brings huge workload.Artificial intelligence(AI)assisted pathologist's WSI analysis can solve the problem of low efficiency and improve the consistency of diagnosis.Among them,the convolution neural network(CNN)algorithm is the most widely used.This article aims to review the reported application of CNN in WSI image analysis,summarizes the development trend of CNN in the field of pathology and makes a prospect.
作者
赵蒙蒙
汪洋
邓家骏
佘云浪
陈昶
ZHAO Mengmeng;WANG Yang;DENG Jiajun;SHE Yunlang;CHEN Chang(Department of Thoracic Surgery,Shanghai Pulmonary Hospital,Tongji University,Shanghai,200433,P.R.China)
出处
《中国胸心血管外科临床杂志》
CAS
CSCD
2019年第11期1063-1068,共6页
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery
基金
上海市卫生健康委先进适宜技术推广项目(2019SY072)
上海市卫生健康委智慧医疗专项研究项目(2018ZHYL0102)
关键词
全视野数字切片
人工智能
深度学习
卷积神经网络
Whole slide image
artificial intelligence
deep learning
convolution neural network