期刊文献+

基于图书特征及词典的豆瓣图书垃圾评论识别 被引量:1

Identification of Douban Book Spam Comments Based on Book Features and Dictionary
下载PDF
导出
摘要 随着互联网的普及和便利,现如今国内外点评网站和各类商务网站高速发展,各类评论信息正在不断影响着人们的生活。豆瓣网就是很知名的网络社区,越来越多互联网用户会在豆瓣网上发表对电影、图书和音乐等的评论,同时越来越多的人们会在看电影前、看书前或者是听音乐前看看豆瓣上的评分和评论去决定是否去看或听。所以此时垃圾评论的识别就至关重要,因为垃圾评论会影响人们对这个事物真实的看法。文中引入了语义分析、图书特征词典和垃圾评论词典。语义分析有利于检测垃圾评论附加功能,同时会使用权重比例过滤模型检测垃圾评论。实验结果表明,文中方法可以达到85.4%的准确率,能有效准确地识别垃圾评论。 With the popularization and convenience of the Internet,comment sites and various business websites at home and abroad are developing at a high speed,and various kinds of commentary information are constantly affecting people’s lives.Douban is a well-known online community.More and more users will post comments on movies,books and music on Douban.At the same time,more and more people will look at the ratings and comments on Douban before watching movies,reading books or listening to music to decide whether to watch or listen.So the identification of spam comments is crucial,because spam comments will affect people’s true perception of this thing.We introduce semantic analysis,book feature dictionary and spam dictionary.Semantic analysis is beneficial to the additional function of spam comment detection,and it can use the weight proportional filter model to detect spam comments.The experiment shows that the proposed method can achieve 85.4%accuracy and can effectively and accurately identify spam comments.
作者 刘高军 印佳明 LIU Gao-jun;YIN Jia-ming(School of Computer,North China University of Technology,Beijing 100144,China)
出处 《计算机技术与发展》 2019年第11期107-112,共6页 Computer Technology and Development
基金 国家自然科学基金(61672040)
关键词 互联网 豆瓣 图书评论 语义分析 垃圾评论检测 Internet Douban book review semantic analysis spam comment
  • 相关文献

参考文献7

二级参考文献80

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190.
  • 3谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157.
  • 4Feng S,Banerjee R,Chai Y J. Syntactic stylometry for deception detection. Proceedings of the 50^th Annual Meeting of the Association for Oomputational I.inguistics, 2012 : 8- 14.
  • 5Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. Proceedings of the 19^th ACM International Conference on Information and Knowledge Management. 2010 : 1549- 1552.
  • 6Lira E P,Nguyen V A,Jindal N,et ag. Detecting product review spammers using rating behaviors. Proceedings of the 19^th ACM International Con{erence on Information and Knowledge Man agement, New York, USA : 2010.
  • 7Wang G, Xie S H, Liu B, et al. Identify online store review spammers via social review graph. ACM Transactions on Intelligent Systems and Technology(TIST) ,2012,3(4).
  • 8Xie S H, Wang G, Lin S Y, et al. Review spam detection via temporal pattern discovery. Proceedings of the 18^th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012: 823-831.
  • 9Lappas T. Fake reviews:The malicious perspective. Proceedings of the 17^th International conference on Applications of Natural Language Processing to In- formation Systems, 2012 : 23-34.
  • 10Almela A, Rafael V, Cantos P. Seeing through deception: A computational approach to deceit detection in written communication. Proceedings of the 13^th Conference of the EuropeanChapter of the Association for Computational Linguistics: EACL. 2012: 15-22.

共引文献84

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部