期刊文献+

基于深度学习的新能源爬坡事件预测方法 被引量:4

Prediction method of wind power and PV ramp event based on deep learning
原文传递
导出
摘要 随着新能源渗透率的逐渐增大,有功功率不平衡的爬坡事件时有发生,甚至造成较大负荷损失。因风电和光伏预测的精度不够,需要考虑的运行场景较多,时域仿真不能满足在线评估要求。提出一种基于深度学习的方法,综合考虑机组和联络线的调节能力,利用堆叠降噪自动编码器提取各层特征训练支持向量机。将风电、光伏和负荷预测数据及上一时刻联络线功率等相关量作为输入,是否发生爬坡事件为输出,通过支持向量机快速预测是否发生爬坡事件。实际电网的仿真结果表明,本研究方法快速准确,能够对爬坡事件进行有效辨识。 With the gradual increase of the renewable energy penetration rate,the ramp event that caused the unbalanced active power occured sometimes,and even a large load loss.Due to the insufficient accuracy of wind power and photovoltaic prediction,there were many operational scenarios to be considered.The time domain simulation could not meet the online assessment requirements.A method based on deep learning was proposed in this paper.Considering the generation unit and tie line adjustment ability,the stacked denoising autoencoder was used to extract each layer feature to train support vector machine.The wind power,photovoltaic and load forecast data,and the power of the tie line at the previous moment were taken as inputs,and whether the ramp event occured as an output.The vector machine was used to quickly predict whether a ramp event occured.The simulation results of practical power grid showed that the proposed method was fast and accurate.It could effectively identify ramp events.
作者 梁志祥 刘晓明 牟颖 刘玉田 LIANG Zhixiang;LIU Xiaoming;MU Ying;LIU Yutian(Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University),Jinan 250061,Shandong,China;Economic&Technology Research Institute,State Grid Shandong Electric Power Company,Jinan 250021,Shandong,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2019年第5期24-28,共5页 Journal of Shandong University(Engineering Science)
基金 承接全球能源互联网的省级大受端电网发展规划及安全防御技术研究 国家重点研发计划项目(2017YFB0902600) 国家电网公司科技资助项目(SGJS0000DKJS1700840)
关键词 电力系统 深度学习 降噪自动编码器 支持向量机 爬坡事件 power system deep learning denoising autoencoder support vector machine ramp event
  • 相关文献

参考文献11

二级参考文献203

共引文献544

同被引文献58

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部