期刊文献+

基于变差系数的SAR图像非局部均值滤波算法 被引量:4

Non-local Mean Filtering Algorithm for SAR Image Based on Coefficient of Variation
下载PDF
导出
摘要 SAR(synthetic aperture radar)图像有固有的乘性相干斑噪声,抑制相干斑噪声和保护边缘信息是研究的重要内容。文章提出了一种变差系数差构建的非局部平均滤波算法DCV-NLM(difference of coefficient of variation non-local means)。首先,搜索窗口中的变差系数的像素与中心像素在相似窗口中之间的局部差,其次,局部差由两个范数构造的相似性参数,用负指数形式得到每个像素的加权系数,最后是对SAR图像的噪声执行加权滤波。通过提出的算法与IDPAD算法对比,从抑制相干斑图像视觉效果方面对比,DCV-NLM算法比起IDPAD算法有更好的相干斑抑制性能。 SAR(synthetic aperture radar)images have inherent multiplicative speckle noise.It is important to suppress speckle noise and protect edge information.In this paper,a non-local means filtering algorithmDCV-NLM(difference of coefficient of variation non-local means)is proposed.Firstly,the local difference between the variation coefficients in the search windowand the central pixels in the similarity window is used.Secondly,the local difference forms a negative exponential weighting coefficient through the similarity parameters constructed by two norms.Finally,the noise of SAR image is weighted and filtered.Compared with IDPADalgorithm,DCV-NLMalgorithmhas better speckle suppression performance in the visual effect of speckle suppression image than IDPAD algorithm.
作者 高飞 朱磊 冯子金 韩普 Gao Fei;Zhu Lei;Feng Zijin;Han Pu(Xi'an Polytechnic University,School of Electronics and Information,Xi’an 710048,China)
出处 《信息通信》 2019年第10期42-44,共3页 Information & Communications
基金 国家自然科学基金(61401347) 陕西省重点研究发展计划(2019GY-113) 陕西省教育厅专项研究计划(17JK0343)
关键词 SAR图像 相干斑抑制 变差系数 局部差 加权系数 SAR image speckle suppression coefficient of variation local difference weighting coefficient
  • 相关文献

参考文献4

二级参考文献30

  • 1熊君君,王贞松,姚建平,石长振.星载SAR实时成像处理器的FPGA实现[J].电子学报,2005,33(6):1070-1072. 被引量:19
  • 2禹卫东.合成孔径雷达信号处理[M].南京:南京航空航天大学,1997..
  • 3(美)S M Kay.现代谱估计原理与应用[M].科学出版社,1994..
  • 4林来兴.微小卫星编队飞行组成虚拟卫星研究.微小卫星编队飞行及应用论文集[M].,2000..
  • 5陈敏铭.矩阵恢复与重建[D].北京:中国科学院计算技术研究所,2010.
  • 6Zhang F,Chang H. A collaborative filtering algorithm embedded BP network to ameliorate sparsity issue[C]//Proceedings of 2005 International Conference on Machine Learning and Cyber- netics, 2005. IEEE, 2005 : 1839-1844.
  • 7Jung K Y, Hwang H J, Kang U G. Constructing full matrix through naive Bayesian for collaborative filtering[M]//Compu-tational Intelligence. Springer Berlin Heidelberg, 2006: 1210- 1215.
  • 8Cands E J,Recht B. Exact matrix completion via convex opti- mization[J]. Foundations of Computational mathematics, 2009, 9(6) :717-772.
  • 9Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Paci- fic Journal of Optimization, 2010,6 (15) : 615-640.
  • 10Lin Zhou-chen, Chen Min-ming, Ma Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank ma- trices[J], arXiv preprint arXiv: 1009. 5055,2010.

共引文献45

同被引文献38

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部