期刊文献+

Evaluation of the hemolysis and fluid dynamics of a ventricular assist device under the pulsatile flow condition 被引量:1

原文传递
导出
摘要 When the rotary blood pumps are used as ventricular assist devices,the pump flow rate will have a pulsatile component even at a constant impeller rotational speed due to the remaining beating of the natural heart.However,previous studies on the in vitro hemolysis evaluation of a rotary blood pump have always been conducted under steady states and this pulsation was not taken into account.In this study,the hemolysis in a centrifugal blood pump is evaluated under the pulsatile flow condition in vitro.The required time-varying flow rate is obtained by conducting a system simulation of the pump-assisted cardiovascular system,and realized by controlling a pulsation unit in the experiments.The results of our tests indicate a significant increase in hemolysis under the pulsatile flow condition compared with the non-pulsatile condition.To reveal the flow characteristics responsible for the higher hemolysis,transient computational fluid dynamic simulations are then performed.This study suggests that traditional hemolysis evaluation under the steady states may not fully represent the hemolytic performance in the clinical use.For the ventricular assist pumps at the design stage,eliminating the concern about the extra hemolysis under the pulsatile condition will be helpful for the subsequent in vivo experiments.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第5期965-975,共11页 水动力学研究与进展B辑(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.51505455) the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51221004).
  • 相关文献

参考文献4

二级参考文献24

  • 1朱宪然,张鸣远,刘昊南,张根广.轴流式血泵内部流场和生物相容性的数值分析[J].西安交通大学学报,2006,40(11):1290-1294. 被引量:11
  • 2Luo X W. A Study on Impeller Inlet Geometry Suitable for a Mini Pump. Kitakyushu: Kyushu Institute of Technology, 2004.
  • 3Liu S H, Nishi M, Yoshida K. Impeller geometry suitable for mini turbo-pump. J Fluids Eng, 2001, 123: 500--506.
  • 4MaIchesky P S. Blood pump technology: A crowded arena J Artif Organs, 2006, 30(3): 129-129.
  • 5Akamatsu T. Development of centrifugal blood pump with magnetically suspended impeller (in Japanese). Turbomachinery, 2001, 29(1): 7-16.
  • 6Tsukiya T, Akamatsu T. Development of the centrifugal blood pump with magnetically suspended impeller (in Japanese). JSME Transaction, Part B, 1995,61(591): 3913-3920.
  • 7Kaneko M, Nakamura Y, Miyazaki K, et aI. Multi-objective optimization of blood-pump with conical spiral groove bearings. In: Proceeding of 4th International Symposium on Fluid Machinery and Fluid Engineering, Beijing, 2008.
  • 8Luo X W, Zhu L, Zhuang B T, et al. A novel shaft-less double suction mini pump. Sci China Tech Sci, 2010, 53: 105-110.
  • 9Zhuang B T, Luo X W, Zhang Y, et al. Design optimization for a shaft-less double suction mini turbo pump. In: Proceeding of 25th IAHR Symposium on Hydraulic Machinery and Systems, Timisoara, 2010.
  • 10Zhuang B T, Luo X W, Zhu L, et al. Cavitation in a shaft-less double suction centrifugal miniature pump. J Eng Thermophys, 2011, 32(SI): 57--60.

共引文献17

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部