期刊文献+

基于改进交叉熵算法的阳极效应预测方法 被引量:4

Anode effect prediction method based on improved cross entropy algorithm
下载PDF
导出
摘要 为了准确预测铝电解过程中的阳极效应故障,使用了改进的交叉熵算法(CEM)与支持向量机(SVM)的组合优化算法。针对传统交叉熵算法的无效样本过多、精度不足、可能陷入局部最优解等缺点,提出使用截断高斯分布作为参数采样函数,避免产生非正样本;同时引入“全局精英样本”的概念,保留了历次迭代中的最优样本,优化了参数更新策略;使用快速非支配排序和拥挤距离来计算样本的适应度值,提高了算法的全局搜索性能。实验结果表明,改进后的优化算法可以有效提高阳极效应预测的准确率。 This paper proposed a combined optimization algorithm based on improved cross entropy algorithm(CEM)and support vector machine(SVM),which is used to predict the anode effect accurately during aluminum electrolysis.Aiming at the shortcomings of the traditional CEM,such as too many invalid samples,insufficient precision,and possibly falling into local optimal solutions,it is proposed to use the truncated Gaussian distribution as the parameter sampling function to avoid generating non-positive samples.At the same time,the concept of“global elite sample”is introduced,the optimal samples in previous iterations are retained,and the parameter update strategy is optimized.The fast nondominated sorting and the crowded distance are used to calculate the fitness value of the sample,which improves the global search performance of the algorithm.The experimental results show that the improved optimization algorithm can effectively improve the accuracy of anode effect prediction.
作者 李翘楚 潘浩 陈晓冉 Li Qiaochu;Pan Hao;Chen Xiaoran(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《国外电子测量技术》 2019年第9期142-146,共5页 Foreign Electronic Measurement Technology
关键词 阳极效应 交叉熵 支持向量机 anode effect cross entropy method support vector machine
  • 相关文献

参考文献4

二级参考文献22

  • 1彭宏,杨立洪,郑咸义,雷秀仁.计算工程优化问题的进化策略[J].华南理工大学学报(自然科学版),1997,25(12):17-21. 被引量:13
  • 2毛勇,周晓波,皮道映,孙优贤,WONG Stephen T.C..Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(10):961-973. 被引量:11
  • 3Wang A, Liu J, Wang H, et al. A novel fault diagnosis of analog circuit algorithm based on incomplete wavelet packet transform and improved balanced binary-tree SVMs[J]. Bio-Inspired Computational Intelligence and Applications, 2007:482-493.
  • 4Rubinstein R Y, Kroese D P. The cross-entropy method: A unified approach to combinatorial optimization[M]. Monte-Carlo simulation and machine learning. New York: Springer, 2004.
  • 5Rubinstein R Y. The cross-entropy method and rare events for maximal cut and bipartition problems[J]. ACM Trans on Modeling and Computer Simulation,2002, 12(1):27-53.
  • 6Alon G, Kroese D P, Raviv T. Application of the crossentropy method to the buffer allocation problem in a simulation-based environment[J]. Annals of Operations Research, 2005, 134(1) : 137-151.
  • 7Kroese D P, Sergey P, Rubinstein R Y. The crossentropy method for continuous multi-extremal optimization [J]. Methodology and Computing in Applied Probability, 2006, 8(3): 383-407.
  • 8Barzilay O, Brailovsky V L. On domain knowledge and feature selection using a support vector machines[J]. Pattern Recognition Letters, 1999, 20(5): 475-484.
  • 9Tu C J, Chuang L Y, Chang J Y, et al. Feature selection using PSO-SVM [J]. Int J of Computer Science, 2007, 33(1): 111-116.
  • 10Kaminska B, Arabi K, Bell I, et al. Analog and mixed-signal benchmark circuits: First release [C]. Proc of the Int Test Conf. Washington DC, 1997:183- 190.

共引文献16

同被引文献16

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部