期刊文献+

基于粒子群算法的海洋温差能朗肯循环系统多目标优化 被引量:3

MULTI-OBJECTIVE OPTIMIZATION OF OTEC RANKINE CYCLE BASED ON PSO ALGORITHM
下载PDF
导出
摘要 为提高海洋温差能发电系统的综合性能,以单位换热面积发电量和单位海水流量发电量为基础建立综合目标函数,选取蒸发温度、冷凝温度、蒸发器和冷凝器的海水出口温度为优化变量,利用粒子群算法对海洋温差能朗肯循环系统进行多目标参数优化。研究结果表明,在28℃温海水和5℃冷海水条件下,循环工质为R717时,蒸发器内的最佳蒸发温度为23.10℃,温海水出口温度为23.42℃;冷凝器内的最佳冷凝温度为12.31℃,冷海水出口温度为10.80℃;在换热器的海水进出口温差超过4℃时,换热器的海水出口温度对系统性能的影响较小。综上,采用多目标优化可实现对各评价指标间的协调,相比单目标优化的传统模型,多目标优化改善了系统的综合性能。 To improve the overall performance of the power generation system of ocean thermal energy conversion(OTEC),an integrated objective function based on the power capacity per unit heat exchange area and per unit seawater flow has been developed. The evaporating temperature,condensing temperature and seawater temperatures at the outlet of evaporator and condenser have been selected as optimization variables. The algorithm of particle swarm has been utilized to optimize the parameters of the Rankine cycle system of OTEC. The results obtained show that it is able to realize coordination of evaluation indicators with a multi-objective optimization model. When the temperatures of warm seawater and cold seawater are 28 ℃ and 5 ℃ respectively,the best evaporating temperature in the evaporator and the warm seawater outlet temperature are 23.10 ℃ and 23.42 ℃ respectively,and the best condensing temperature and cold seawater outlet temperature are 12.31 ℃ and 10.80 ℃ respectively,with R717 as working fluid. Moreover,when the temperature difference between seawater inlet and outlet in the heat exchanger is more than 4 ℃,the absolute value of temperature for the seawater outlet in the heat exchanger has less impact on the system performance. Compared with the traditional mono-optimization model,the integrated optimization has improved the overall performance of system.
作者 王锰 赵英汝 张浩然 王兵振 Wang Meng;Zhao Yingru;Zhang Haoran;Wang Bingzhen(College of Energy,Xiamen University,Xiamen 361005,China;College of Ocean and Earth Sciences,Xiamen University,Xiamen 361005,China;National Ocean Technology Center,Tianjin 300112,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2019年第10期2716-2724,共9页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51876181)
关键词 海洋温差能发电 朗肯循环 粒子群算法 多目标优化 ocean thermal energy conversion(OTEC) Rankine cycle particle swarm optimization(PSO) multi-objective optimization
  • 相关文献

参考文献5

二级参考文献75

  • 1王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 2张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 3陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.
  • 5EBERHART R C, SHI Y H. Particle swarm optimization: development, applications and resources[C]//Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE, 2001:81 - 86.
  • 6SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceeding of the 7th Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1998:591 - 600.
  • 7SHI Y H, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 1999:1945 - 1950.
  • 8EBERHART R C, SHI Y H. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation. New York: IEEE, 2000:84 - 88.
  • 9KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995, 4: 1942-1948.
  • 10EBERHART R, KENNEDY J.A new optimizer using particle swarm theory[C] // MHS '95: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway: IEEE, 1995: 39-43.

共引文献126

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部