期刊文献+

批量流水调度问题的量子候鸟协同优化算法

Quantum-inspired migrating birds co-optimization algorithm for lot-streaming flow shop scheduling problem
下载PDF
导出
摘要 为了求解批量流水调度问题(LFSP)的最小化最大完工时间,提出一种量子候鸟协同优化(QMBCO)算法。首先,采用Bloch量子球面编码方案扩大解空间;然后,运用FL算法优化初始解,以弥补传统随机初始解的不足,保证初始种群具有较高的质量;最后,使用候鸟优化(MBO)算法及变邻域搜索(VNS)算法进行迭代,增强算法的全局搜索能力。采用随机生成不同规模的实例仿真,将QMBCO算法与目前较优的离散粒子群优化(DPSO)算法、MBO算法和量子布谷鸟协同搜索(QCCS)算法相比较。结果表明,在两种不同运行时间下QMBCO与DPSO、MBO、QCCS相比产生的最优解平均百分比偏差(ARPD)分别平均下降65%、34%和24%,证明了QMBCO算法的有效性和高效性。 A Quantum-inspired Migrating Birds Co-Optimization(QMBCO)algorithm was proposed for minimizing the makespan in Lot-streaming Flow shop Scheduling Problem(LFSP).Firstly,the quantum coding based on Bloch coordinates was applied to expand the solution space.Secondly,an initial solution improvement scheme based on Framinan-Leisten(FL)algorithm was used to makeup the shortage of traditional initial solution and construct the random initial population with high quality.Finally,Migrating Birds Optimization(MBO)and Variable Neighborhood Search(VNS)algorithm were applied for iteration to achieve the information exchange between the worse individuals and superior individuals in proposed algorithm to improve the global search ability.A set of instances with different scales were generated randomly,and QMBCO was compared with Discrete Particle Swarm Optimization(DPSO),MBO and Quantum-inspired Cuckoo Co-Search(QCCS)algorithms on them.Experimental results show that compared with DPSO,MBO and QCCS,QMBCO has the Average Relative Percentage Deviation(ARPD)averagely reduced by 65%,34%and 24%respectively under two types of running time,verifying the effectiveness and efficiency of the proposed QMBCO algorithm.
作者 陈林烽 齐学梅 陈俊文 黄琤 陈付龙 CHEN Linfeng;QI Xuemei;CHEN Junwen;HUANG Cheng;CHEN Fulong(School of Computer and Information,Anhui Normal University,Wuhu Anhui 241002,China;Anhui Provincial Key Laboratory of Network and Information Security(Anhui Normal University),Wuhu Anhui 241002,China)
出处 《计算机应用》 CSCD 北大核心 2019年第11期3250-3256,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61572036)~~
关键词 批量流水调度问题 最大完工时间 候鸟优化算法 Bloch量子球面编码 变邻域搜索算法 平均百分比偏差 Lot-streaming Flow shop Scheduling Problem(LFSP) makespan Migrating Birds Optimization(MBO)algorithm quantum coding based on Bloch coordinates Variable Neighborhood Search(VNS)algorithm Average Relative Percentage Deviation(ARPD)
  • 相关文献

参考文献3

二级参考文献44

  • 1陈宏明,周久兵,刘胜兰.基于曲率的三角网格孔洞修补算法的研究[J].淮阴工学院学报,2004,13(5):32-34. 被引量:4
  • 2王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 3李亮,迟世春.新型和声搜索算法在土坡稳定分析中的应用[J].水利与建筑工程学报,2007,5(3):1-6. 被引量:14
  • 4YOON S H, VENTURA J A. An application of genetic algorithms tolot-streaming flow shop scheduling[ J]. HE Transactions, 2002, 34(9):779 -787.
  • 5POTTS C N, BAKER K R. Flow-shop scheduling with lot streaming[J]. Operations Research Letters, 1989,8(6):297 -303.
  • 6SRISKANDARAJAH C, WAGNEUR E. Lot streaming and schedu-ling multiple products in two-machine no-wait flowshops[ J]. IIETransactions, 1999,31(8): 695 -707.
  • 7PAN Q K, TASGETIREN M F, SUGANTHAN P N,et al. A dis-crete artificial bee colony algorithm for the lot-streaming flow shopscheduling problem [ J]. Informational Sciences, 2011, 181 ( 12):2455 -2468.
  • 8PAN Q K, RUIZ R. An estimation of distribution algorithm for lot-streaming flow shop problems with setup times [ J ]. Omega -International Journal of Management Sciences, 2012,40 ( 2 ) : 166 —180.
  • 9GEEM Z W. Optimal design of water distribution networks usingharmony search[ M]. Seoul: Korea University, 2000.
  • 10GEEM Z W, KIM J H. A new heuristic optimization algorithm:harmony search[ J]. Simulation, 2001,76(2) :60 -68.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部