期刊文献+

基于双微阵列与卷积神经网络的语音识别方法 被引量:13

Speech recognition method based on dual micro-array and convolutional neural network
下载PDF
导出
摘要 为解决噪声环境下语音识别率降低以及传统波束形成算法难以处理空间噪声的问题,基于双微阵列结构提出了一种改进的最小方差无畸变响应(MVDR)波束形成方法。首先,采用对角加载提高双微阵列增益,并利用递归矩阵求逆降低计算复杂度;然后,通过后置调制域谱减法对语音作进一步处理,解决了一般谱减法容易产生音乐噪声的问题,有效减小了语音畸变,获得了良好的噪声抑制效果;最后,采用卷积神经网络(CNN)进行语音模型的训练,提取语音深层次的特征,有效地解决了语音信号多样性问题。实验结果表明,提出的方法在经CNN训练的语音识别系统模型中取得了较好的识别效果,在信噪比为10 dB的F16噪声环境下的语音识别率达到了92.3%,具有良好的稳健性。 In order to solve the low speech recognition rate in noise environment,and the difficulty of traditional beamforming algorithm in dealing with spatial noise problem,an improved Minimum Variance Distortionless Response(MVDR)beamforming method based on dual micro-array was proposed.Firstly,the gain of micro-array was increased by diagonal loading,and the computational complexity was reduced by the inversion of recursive matrix.Then,through the modulation domain spectrum subtraction for further processing,the problem that music noise was easily produced by general spectral subtraction was solved,effectively reducing speech distortion,and well suppressing the noise.Finally,the Convolution Neural Network(CNN)was used to train the speech model and extract the deep features of speech,effectively solve the problem of speech signal diversity.The experimental results show that the proposed method achieves good recognition effect in the CNN trained speech recognition system,and has the speech recognition accuracy of 92.3%in F16 noise environment with 10 dB signal-to-noise ratio,means it has good robustness.
作者 刘伟波 曾庆宁 卜玉婷 郑展恒 LIU Weibo;ZENG Qingning;BU Yuting;ZHENG Zhanheng(School of Information and Communication,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处 《计算机应用》 CSCD 北大核心 2019年第11期3268-3273,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61461011) 广西自然科学基金重点项目(2016GXNSFDA380018) “认知无线电与信息处理”教育部重点实验室主任基金资助项目(CRKL160107,CRKL170108)~~
关键词 语音识别 双微阵列 卷积神经网络 噪声环境 稳健性 speech recognition dual micro-array Convolutional Neural Network(CNN) noise environment robustness
  • 相关文献

参考文献5

二级参考文献36

  • 1冯琳,段复建.基于锥模型的非单调自适应信赖域算法[J].山西大学学报(自然科学版),2011,34(4):580-586. 被引量:2
  • 2KROLIK J L. The performance of matched-field beamformers with Mediterranean vertical array data [J]. IEEE Trans Signal Processing, 1996, 44(10): 2605-2611.
  • 3GERSHMAN A B, TURCHIN V I, ZVEREV V A. Experi- mental results of localization of moving underwater signal by a- daptive beamforming [J].IEEE Trans Signal Processing, 1995, 43(10) t 2249-2257.
  • 4HARRYI.ANDVANTREES.最优阵列处理技术[M].汤俊译.北京:清华大学出版社,2008:382-392.
  • 5CARLSON B D. Covariance matrix estimation errors and diag- onal loading in adaptive arrays[J].IEEE Trans on Aerospace and Electronic Systems, 1988, 24 (4): 397-401.
  • 6VOROBYOV S A, GERSHMAN A B, LUO Z Q. Robust a- daptive beamforming using worst-case performance optimiza- tion: a solution to the signal mismatch problem [J]. IEEE Trans Signal Processing (S1053-587X), 2003, 51(2) : 313- 323.
  • 7GUERCI J R. Theory and application of covarianee matrix ta- per for robust adaptive beamforming[J]. IEEE Trans on Sig- nal Processing, 1999, 47 (4): 977-985.
  • 8Bemuti M, Schwartz R, Makhoul J. Enhancement of speech corrupted by acoustic noise [ C ]//Acoustics, Speech, and Signal Processing, IEEE International Conference on IC- ASSP'79. IEEE, 1979, 4: 208-211.
  • 9Kamath S, Loizou P. A multi-band spectral subtrac- tion method for enhancing speech corrupted by colored noise[ C ]//Acoustics, Speech, and Signal Processing (ICASSP) , 2002 IEEE International Conference on. IEEE, 2002, 4 : 4164.
  • 10Cao L, Zhang T Q, Gao H, et al. Multi-band spectral sub- traction method combined with auditory masking properties for speech enhancement [ C ]// Image and Signal Processing (CISP), 2012 5th International Congress on. IEEE, 2012: 72 -76.

共引文献90

同被引文献89

引证文献13

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部