摘要
随着空间光学技术的发展,衍射成像系统成为空间光学领域的研究热点。提出了一种充气薄膜衍射成像结构设计方案,针对其在空间热载荷作用下的热力耦合效应开展研究。建立了充气薄膜衍射成像结构的热力耦合顺序分析框架,基于I-DEAS和ANSYS软件二次开发技术,实现了热力耦合数值分析,得到了结构在轨运行时的瞬态温度场、热应力、热变形等。分析结果表明,充气支撑结构产生了较大热变形,但最大热应力远小于聚酰亚胺薄膜材料的抗拉强度,而镜面中心处没有出现较大的热变形响应,为充气薄膜衍射成像结构的防热设计提供了技术支持。
With the development of space optical technology, diffraction imaging system has become a research hotspot in the field of space optics. In this paper, a structural design scheme of an inflatable membrane diffraction imaging structures is presented. Thermodynamic coupling effects of inflatable structures under the space thermal environment were studied. A coupled thermal-structural sequence analysis framework for inflatable structures was developed. The thermal-structural coupling analysis of the inflatable structure was realized by I-DEAS and ANSYS secondary development technology. The transient heat transfer, thermal stress and thermal deformation of the structures in orbit were investigated. The results show that there is large thermal deformation in the inflatable support structures, but the maximum thermal stress is much less than the tensile strength of the polyimide membrane,and there is no large thermal deformation response at the center of the structures. The technology support for thermal protection design of inflatable membrane diffraction imaging structures is provided.
作者
孙向伟
徐彦
王培栋
方琴
朱东方
SUN Xiangwei;XU Yan;WANG Peidong;FANG Qin;ZHU Dongfang(Advanced Technology Research Institute,Zhejiang University,Hangzhou 310027,China;School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China;Shanghai Aerospace Control Technology Institute,Shanghai 200233,China;Shanghai Key Laboratory of Space Intelligent Control Technology,Shanghai 200233,China)
出处
《中国空间科学技术》
EI
CSCD
北大核心
2019年第5期8-18,共11页
Chinese Space Science and Technology
基金
国家自然科学基金(11402229)
浙江省自然科学基金(LQ14A020003)
上海航天科技创新基金(SAST2016074)
关键词
薄膜衍射成像结构
充气展开
热力耦合分析
瞬态温度场
热变形
空间光学
membrane diffraction imaging structures
inflatable deployment
thermal-structural coupling analysis
transient heat transfer
thermal deformation
space optics