期刊文献+

一种改进的基于暗通道先验的快速去雾算法 被引量:8

An improved fast defogging algorithm based on dark channel prior
下载PDF
导出
摘要 针对暗通道先验去雾算法复杂度过高,存在大片天空区域不适用的情况,提出一种改进的基于暗通道先验的快速去雾算法。首先,通过对灰度图像迭代出最佳阈值将天空区域分割出来;然后采用文中提出的方法分别对天空和非天空部分求解大气光强度,以获得精确的透射率,为使图像边缘信息能够保留完整,采用梯度强化的方法对图像进行边缘锐化;最后通过大气散射模型恢复出无雾图像,采用自动色阶算法平衡图像亮度。实验结果表明,经过与4种算法对比后,能够较好的适用于存在大片天空区域的有雾图像,图像具有较好的视觉效果,能够保留图像的边缘信息、细节纹理,降低了处理时间,提高了运行效率,同时为后续的目标识别等领域奠定基础。 Since the dark channel prior defogging algorithm has high complexity and is not applicable to the image with large sky region,an improved fast defogging algorithm based on dark channel prior is proposed.The sky region is segmented by iterating the optimal threshold value of gray images,and then the atmospheric light intensity of the sky region and the non sky region is solved respectively by means of the method proposed in this paper,so as to obtain accurate transmissivity.The gradient strengthening method is used to sharpen the edge of an image to retain the integrity information of image edge.The defogged im age is recovered by the atmospheric scattering model,and the image brightness is balanced by means of the automatic color lev el algorithm.The experimental results show that,in comparison with the four algorithms,this algorithm can be better applied to the foggy images with large sky region,and the images have better visual effect.It can retain the edge information and detail tex ture of the image,reduce the processing time and improve the operation efficiency,which may lay the foundation for subsequent target recognition and other fields.
作者 王娇 韩加蓬 马骏 李煜 刘二全 郭栋 WANG Jiao;HAN Jiapeng;MA Jun;LI Yu;LIU Erquan;GUO Dong(School of Transport and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《现代电子技术》 北大核心 2019年第22期63-68,共6页 Modern Electronics Technique
基金 国家自然科学基金资助项目(51508315) 山东省自然科学基金资助项目(ZR2016EL19)~~
关键词 快速去雾算法 暗通道先验 图像去雾 大气光强度求解 仿真实验 性能评价 fast defogging algorithm dark channel prior image defogging atmospheric light intensity solution simula tion experiment performance evaluation
  • 相关文献

参考文献4

二级参考文献41

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 3胡晓飞,胡栋.颅内出血CT图像血块的分割算法[J].中国体视学与图像分析,2006,11(3):206-210. 被引量:2
  • 4翟艺书,柳晓鸣,涂雅瑗,陈亚宁.一种改进的雾天降质图像的清晰化算法[J].大连海事大学学报,2007,33(3):55-58. 被引量:17
  • 5Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 6Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 7He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 8Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.
  • 9Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45.
  • 10Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100.

共引文献122

同被引文献60

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部