期刊文献+

基于彩色化的色度图像超分辨率重建算法研究

Research on Super-Resolution Reconstruction Algorithm of Chromatic Image Based on Colorization
下载PDF
导出
摘要 图像超分辨率重建算法一般仅采用差值处理色度信息,对色度重视不够,重构图像色彩质量不高。因此,提出了一种基于彩色化的色度图像超分辨率重建算法。介绍了图像评价的基本标准和灰色图像彩色化的关键技术。从图像初始色彩质量、图像彩色化算法等方面,探讨了基于彩色化的色度图像超分辨率重建算法。实验结果表明,运用此算法重建后的高分辨率图像和原图的结构相似性较高。重视色度处理,可提升高分辨率彩色图像质量,减少边缘区域范围内图像的色彩失真现象。 Traditional image super-resolution reconstruction algorithms only use difference to process chromaticity information,but do not pay attention to chromaticity,resulting in low quality of reconstructed image color. In this paper,a color-based super-resolution reconstruction algorithm for chromatic image is designed. Firstly,the basic criteria of image evaluation and the key technologies of gray image colorization are introduced. Then the super-resolution reconstruction algorithm based on color image is studied from the aspects of image initial color quality and image colorization algorithm. Finally,the effectiveness of the algorithm is verified by experiments. The experimental results show that similarity of the reconstructed high-resolution image and the original image is higher. Chromaticity processing of the color image can improve the quality of the high-resolution color image. At the same time,the color distortion of the image in the edge region is lower.
作者 秦洁 李莉 QIN Jie;LI Li(College of Economics and Technology,Anhui Agricultural University,Hefei 230000,China)
出处 《重庆科技学院学报(自然科学版)》 CAS 2019年第5期57-61,共5页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 2018年安徽省教育厅自然科学基金项目“基于数字图像处理的非接触式距离测量的研究”(KJ2018A0649)
关键词 图像处理 超高分辨率 彩色化 算法 image processing ultra-high resolution colorization algorithm
  • 相关文献

参考文献7

二级参考文献45

  • 1曹文伦,彭国华,秦洪元,张军.利用色彩分量相关性的彩色图像分形编码方法[J].计算机工程与应用,2004,40(22):51-55. 被引量:21
  • 2胡国飞,傅健,彭群生.自适应颜色迁移[J].计算机学报,2004,27(9):1245-1249. 被引量:51
  • 3沈红斌,杨杰,刘小军,陈宁江.基于模糊信息增益的图像相关性度量[J].上海交通大学学报,2006,40(3):466-470. 被引量:6
  • 4CHANG Hong,YEUNG Dit-yan,XIONG Yi-min.Super-resolution through neighbor embedding[C]//Computer Vision and Pattern Recognition,2004.CVPR 2004.Proceedings of the 2004 IEEE Computer Society Conference on.IEEE,2004:275-282.
  • 5FREEMAN W T,PASZTOR E C,CARMICHAEL O T.Learning low-level vision[J].International journal of computer vision,2000,40 (1):25-47.
  • 6KIM K I,KWON Y.Example-based learning for single-image super-resolution[M]//Pattern Recognition.Springer Berlin Heidelberg,2008:456-465.
  • 7MILYAZAWA R, KUDOH S, NAKACHF T,et al. Coding efficiency improvement on distributed vide coding utilizing super resolutim approach[ C]//Proc. International Symposium on lntelligen! Signal Prqx'essing and Communication Systems ( ISPACS 201 1 ). ChiangM ai : IEEE Press,2011 : 1-4.
  • 8BARRETO D,ALVAREZ L D, MOLINA R, KATSAGGELOS A K, et al. Region based super resolution for compression [ J ]. Muhidimen- sional Systems and Signal Processing, 2007, 18(2) :59-81.
  • 9GLAISTER J, CHAN C, FRANKOVICH M, et al. Hybrid video com- pression using selective keyframe identification and patch-based su- per-resolution [ C ]//Proc. IEEE International Symposium on Multi- media. IS. 1. ] :IEEE Press,2011:105-110.
  • 10SHUNSUKE ON,ISAO Y. Optimized JPEG-IMAGE decompression with super-resolution interpolation using multi-order total variation [ C]//Proc, 2013 20th IEEE International Conference on Image Processing (ICIP). Melbourne : IEEE Press,2013:474-478.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部