期刊文献+

4D打印及其关键技术 被引量:8

4D printing and its key technologies
下载PDF
导出
摘要 4D打印是3D打印结构在形状、性能和功能方面有目的性的演变,具有时间相关性、打印机无关性和可预测性,其智能动态特性使其具有良好的性能和广阔的应用前景。本文在简要回顾4D打印国内外现状的基础上,给出了4D打印的概念和组成要素,进而从打印结构形状变化的维度对4D打印进行了分类,同时对4D打印组成要素中的打印材料、激励机制和数学建模方法等关键技术进行了分析,最后指出4D打印技术的发展方向是将智能材料与3D打印相结合,将复杂结构简单化制造,利用其独特的自组装、自适应和自修复特性,实现在航天、深海、精确医疗等特殊服役环境和领域的自动化、智能化、个性化应用。 4D printing can be defined as the evolution of 3D printing structure in terms of shape,performance and function.It has time dependence,printer independence and predictability,and its smart dynamic performance creates promising capabilities and broad potential applications.On the basis of a brief review of the status of 4D printing at home and abroad,the concept and components of 4D printing were given firstly.Then the 4D printing was classified from the dimension of printing structure shape change.Furthermore,the key technologies such as printing materials,incentive mechanism and mathematical modeling method in 4D printing elements were analyzed.Finally,it was pointed out that the development direction of 4D printing technology is to combine intelligent materials with 3D printing,simplify the manufacture of complex structures,and realize the automation,intellectualization and personalization applications in special service environments and fields such as aerospace,deep sea and precise medical treatment by using its unique characteristics of self-assembly,self-adaption and self-repairing.
作者 沈自才 夏彦 丁义刚 赵春晴 杨艳斌 SHEN Zi-cai;XIA Yan;DING Yi-gang;ZHAO Chun-qing;YANG Yan-bin(Beijing Institute of Spacecraft EnvironmentEngineering,Beijing 100094,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2019年第11期11-18,共8页 Journal of Materials Engineering
基金 国家自然科学基金资助项目(41174166)
关键词 4D打印 机制 关键技术 自组装 自适应 自修复 4D printing mechanism key technology self-assembly self-adaption self-repairing
  • 相关文献

参考文献6

二级参考文献126

  • 1李竹君,张恒超.大型环形可展开天线反射器展开控制技术[J].空间电子技术,2012,9(1):30-34. 被引量:1
  • 2章程斌,莫健华,黄树槐.光固化成形系统激光束光斑的在线检测与位置补偿[J].激光杂志,2003,24(3):60-61. 被引量:3
  • 3R. Langer, J. P. Vacanti. Tissue engineering. Science, 1993, 260(5110): 920- 926.
  • 4Q. L. Loh, C. Choong. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013,19(6): 485-502.
  • 5S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng., 2001, 7(6): 679-689.
  • 6S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part IL Rapid prototyping techniques Tissue Eng, 2002, 8(1): 1-11.
  • 7K. F. Leong, C. M. Cheah, C. K. Chua. Solid freeform fabrication of three- dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003, 24(13): 2363-2378.
  • 8W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran. Rapid proto- typing in tissue engineering: Challenges and potential. Trends Biotechnol., 2004, 22(12): 643-652.
  • 9T. Boland, et al. Rapid, prototyping of artificial tissues and medical de- vices. Adv. Mater. Process., 2007,165(4): 51-53.
  • 10P. J. Brtolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Bioman- ufacturing for tissue engineering: Present and future trends. Virtual and Physical Prototyping, 2009, 4(4): 203-216.

共引文献77

同被引文献132

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部