摘要
本文研究了带超线性非线性项的陈-西蒙斯-薛定谔方程组.利用集中紧致原理和Nehari流形,证明了该方程组基态解的存在性,得到了该基态解在无穷远处是指数衰减的.
We study the nonlinear Chern-Simons-Schr?dinger system with superlinear nonlinearities. By the concentration compactness principle combined with the Nehari manifold, we prove the existence of positive ground state to this problem. Moreover, we obtain that the ground state has exponential decay at infinity.
作者
余纯
万优艳
YU Chun;WAN You-yan(Department of Mathematics,Jianghan University,Wuhan 430056,China)
出处
《数学杂志》
2019年第6期823-834,共12页
Journal of Mathematics
基金
Supported by the Scientific Research Fund of Hubei Provincial Education Department(B2016299)
关键词
基态解
陈-西蒙斯-薛定谔方程组
变分法
NEHARI流形
集中紧致原理
the ground state
the Chern-Simons-Schrodinger system
the variational method
the Nehari manifold
the concentration compactness principle