期刊文献+

Strategies for accurate response assessment of radiochromic film using flatbed scanner for beam quality assurance

Strategies for accurate response assessment of radiochromic film using flatbed scanner for beam quality assurance
下载PDF
导出
摘要 Radiochromic film is a useful tool for beam quality assurance, but accurate response assessment of the film is still a problem. In this study, the response uncertainties of HDV2 film were investigated using a flatbed scanner from both the scanning settings and interscan variability. Scanning settings are fixed conditions for scanning, including scanning resolution and focus setting.In this study, multipeak distributions of pixel values were found under some dots-per-inch values, which should be avoided, and the optimal setting of 2000 dpi without this problem was selected. By changing the focus setting, the relative standard deviation of pixel values was reduced by 36–50%. The influence of the interscan variability induced by three factors was investigated, including the outside illumination intensity, film homogeneity, and operating temperature. Scanning the film before and after irradiation at the same position was recommended. Moreover, the suitable operating temperature range for the scanner was found to be 15–24 °C, which results in stable film responses. Regarding the studied factors, correction methods and strategies were proposed, and the accurate response assessment of HDV2 film was realized. Finally, a standard operating procedure for response assessment of films was introduced. It can help other researchers study more scanners, films, and particle types. Radiochromic film is a useful tool for beam quality assurance, but accurate response assessment of the film is still a problem. In this study, the response uncertainties of HDV2 film were investigated using a flatbed scanner from both the scanning settings and interscan variability. Scanning settings are fixed conditions for scanning, including scanning resolution and focus setting.In this study, multipeak distributions of pixel values were found under some dots-per-inch values, which should be avoided, and the optimal setting of 2000 dpi without this problem was selected. By changing the focus setting, the relative standard deviation of pixel values was reduced by 36–50%. The influence of the interscan variability induced by three factors was investigated, including the outside illumination intensity, film homogeneity, and operating temperature. Scanning the film before and after irradiation at the same position was recommended. Moreover, the suitable operating temperature range for the scanner was found to be 15–24 °C, which results in stable film responses. Regarding the studied factors, correction methods and strategies were proposed, and the accurate response assessment of HDV2 film was realized. Finally, a standard operating procedure for response assessment of films was introduced. It can help other researchers study more scanners, films, and particle types.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第11期1-9,共9页 核技术(英文)
基金 supported by the National Natural Science Foundation of China(No.11805100) the Natural Science Foundation of Jiangsu Province(No.BK20180415) the National Key Research and Development Program(No.2016YFE0103600) the National Key Research and Development Program(No.2017YFC0107700) the Foundation of Graduate Innovation Center in NUAA(No.kfjj20180614) the Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 Radiochromic film Response assessment SCANNING SETTING Interscan VARIABILITY Standard operating procedure Radiochromic film Response assessment Scanning setting Interscan variability Standard operating procedure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部