期刊文献+

高光谱亚像元定位的线特征探测法 被引量:2

Linear feature detection for hyperspectral subpixel mapping
下载PDF
导出
摘要 未考虑地物亚像元级空间结构特征是影响高光谱亚像元定位精度的因素之一。为了有效解决这一问题,本文提出一种基于混合像元线特征探测的亚像元定位算法。首先,通过光谱解混确定含典型线状地物的混合像元。然后,基于完备直线集的最大线性指数方法确定其余含线特征的混合像元,使用模板匹配方法结合像元引力确定含线特征混合像元的亚像元类别。最后,基于线性优化的方法迭代确定剩余混合像元的亚像元类别。通过真实数据及仿真数据的试验,结果表明所提出的方法能有效提高亚像元定位精度。 The ignorance of the spatial structure of subpixel is one of the factors that influence the accuracy of hyperspectral subpixel mapping.In order to effectively solve this problem,a subpixel mapping algorithm is proposed that based on linear feature detection in mixed pixels.Firstly,the mixed pixels of typical linear feature classes are determined by spectral unmixing.Then,based on the maximum linear index method of the complete straight-line set,the linear features of remaining mixed pixels are determined.The template matching method is used in conjunction with the pixel attraction to determine the classes of linear subpixels.Finally,the subpixel categories of the remaining mixed pixels are iteratively determined based on the linear optimization method.The experimental results of real data and simulation data show that the proposed method can effectively improve the precision of subpixel mapping.
作者 刘照欣 赵辽英 厉小润 陈淑涵 LIU Zhaoxin;ZHAO Liaoying;LI Xiaorun;CHEN Shuhan(School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018,China;College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《测绘学报》 EI CSCD 北大核心 2019年第11期1464-1474,共11页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(61671408 61571170) 教育部联合基金(6141A02022350) 上海航天科技创新基金(SAST2016028)~~
关键词 图像处理 亚像元定位 空间相关性 线特征探测 模板匹配 image processing subpixel mapping spatial correlation linear feature detection template matching
  • 相关文献

参考文献7

二级参考文献89

  • 1凌峰,张秋文,王乘,周建中.基于元胞自动机模型的遥感图像亚像元定位[J].中国图象图形学报,2005,10(7):916-921. 被引量:15
  • 2孙长亮,何峻,肖怀铁.基于ROC曲线的目标识别性能评估方法[J].雷达科学与技术,2007,5(1):17-21. 被引量:17
  • 3吴柯,李平湘,张良培,沈焕锋.基于正则MAP模型的遥感影像亚像元定位[J].武汉大学学报(信息科学版),2007,32(7):593-596. 被引量:6
  • 4Alsing S G. The Evaluation of Competing Classification[D].US: Air Force Institure of Technology,2002.
  • 5Provost F, Fawcett T. Robust Classification for Imprecise Environmeuts[ J ]. Machine Learning, 2001,42 ( 3 ) : 203 - 231.
  • 6Swets J A. ROC Analysis Applied to the Evaluation of Medical Imaging Techniques [J]. Investigative Radiology, 1997, 14 (2) :109 - 121.
  • 7de sa J P M.模式识别-原理、方法及应用[M].北京:清华大学出版社,2002.
  • 8Marzban C. A Comment on the ROC Curve and the Area Under it as Performance Measures [EB/OL]. 2004. http:// www. nhn. ou. edu/marzban.
  • 9Hanley J A, McNeil B J. The Meaning and Use of the Area Under a Receiver Operating Characteristic(RCX2) Curve[J]. Radiology, 1982,143 (1): 29 - 36.
  • 10CHARLES I, ARNON K. A Review of Modeling Technique for Sub pixel Land Cover Estimation [J]. Remote Sensing Reviews, 1996, 13: 161- 186.

共引文献49

同被引文献35

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部