期刊文献+

基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法 被引量:9

Bearing fault diagnosis based on unsupervised transfer component analysis and deep belief network
下载PDF
导出
摘要 针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervised transfer component analysis,UTCA)和深度信念网络(deep belief network,DBN)的故障诊断方法。首先利用UTCA的核函数将不同工况样本特征映射到一个共享再生核Hilbert空间中,使得源域和目标域样本集更加相似,并通过最大均值偏差嵌入法(maximum mean discrepancy embedding,MMDE)判断能够迁移的源域数据,将源域样本迁移到目标域中,为深度学习提供充足的训练样本,解决了实际故障样本较少的问题;然后采用DBN模型对源域样本进行训练,再对映射后无标记的目标域样本进行故障诊断分析。利用不同工况下的滚动轴承实验数据进行算法验证,结果表明,与普通DBN、SVM、BPNN以及传统机器学习-UTCA融合方法相比,本文方法对滚动轴承故障的诊断精度更高。 To address the problem of low recognition accuracy due to insufficient fault samples,a bearing fault diagnosis method based on unsupervised transfer component analysis(UTCA)and deep belief network(DBN)is proposed.Firstly,UTCA kernel function is used to map the sample characteristics in different working conditions into a sharable reproducing kernel Hilbert space so that the sample sets in source and target domains are more similar.Then the transferable source domain data are chosen by the maximum mean deviation embedding(MMDE)method and transferred to the target domain,which provides sufficient training samples for deep learning and solves the shortage of fault samples.Finally,DBN model is applied to train the source domain samples,and the fault diagnosis is performed on the unlabeled target domain samples after mapping.The proposed algorithm is tested by the experimental data of rolling bearing in different working conditions.The results show that,compared with DBN,SVM,BPNN and those methods integrating traditional machine learning and UTCA,this algorithm has higher diagnosis accuracy for rolling bearing faults.
作者 谭俊杰 杨先勇 徐增丙 王志刚 Tan Junjie;Yang Xianyong;Xu Zengbing;Wang Zhigang(Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;College of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,China;China Ship Research and Design Center,Wuhan 430064,China)
出处 《武汉科技大学学报》 CAS 北大核心 2019年第6期456-462,共7页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(51775391) 装备预研基金项目(6142223180312)
关键词 故障诊断 滚动轴承 无监督迁移成分分析 深度信念网络 迁移学习 深度学习 fault diagnosis rolling bearing UTCA DBN transfer learning deep learning
  • 相关文献

参考文献5

二级参考文献56

  • 1孙自强,陈长征,谷艳玲,刘欢.基于混沌和取样积分技术的大型风电增速箱早期故障诊断[J].振动与冲击,2013,32(9):113-117. 被引量:15
  • 2李友荣,曾法力,吕勇,刘安中.小波包分析在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):101-103. 被引量:26
  • 3袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:86
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献435

同被引文献154

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部