期刊文献+

Lagrange子流形理论在约束力学系统正则变换和勒让德变换中的应用

APPLICATION OF LAGRANGE SUBMANIFOLD THEORY IN THE CANONICAL TRANSFORMATION AND LEGENDRE TRANSFORMATION OF CONSTRAINED MECHANICAL SYSTEMS
下载PDF
导出
摘要 Lagrange方程与Hamilton方程之间的勒让德变换理论和Hamilton方程的正则变换理论在分析力学中具有重要的地位,从局域坐标的角度很难找到勒让德变换和正则变换之间的相关性.本文主要基于辛流形的Lagrange子流形理论从全局上给出正则变换理论和勒让德变换理论的统一几何解释,进而在几何力学的角度清晰的描述Hamilton系统的正则变换和Lagrange方程与Hamilton方程之间的勒让德变换的几何结构. Both the Legendre transformation between Lagrange′s equations and Hamilton′s equations and the ca nonical transformation theory of Hamilton′s equations play an important role in analytical mechanics.There seems to be no relationship between them from a local perspective.In this paper,based on the Lagrangian submanifold theory of symplectic manifold,the unified geometric interpretation of the canonical transformation theory and the Legendre transformation theory was given globally.Then,by utilizing geometric mechanics,the geometric struc ture of the canonical transformation for a Hamilton system and the geometric Legendre transformation between La grange′s equations and Hamilton′s equations were clearly described.
作者 刘畅 王聪 刘世兴 郭永新 Liu Chang;Wang Cong;Liu Shixing;Guo Yongxin(College of Physics Liaoning University,Shenyang 110036,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China)
出处 《动力学与控制学报》 2019年第5期439-445,共7页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11772144,11572145,11472124)~~
关键词 约束力学系统 Lagrange子流形 辛流形 正则变换 勒让德变换 constrained mechanical systems Lagrangian submanifold symplectic manifold canonical transformation Legendre transformation
  • 相关文献

参考文献4

二级参考文献39

  • 1GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 2GUO YongXin1,LIU Chang2,WANG Yong3,LIU ShiXing1 & CHANG Peng2 1 College of Physics,Liaoning University,Shenyang 110036,China,2 School of Aerospace Engineering,Beijing Institute of Technology,Beijing 110081,China,3 School of Basic Medical Science,Guangdong Medical College,Dongguan 523808,China.Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1707-1715. 被引量:6
  • 3Arnold V I,Kozlov V V,Neishtadt A I.Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Science . 1988
  • 4Sarlet W.The Helmholtz conditions revisited: A new approach to the inverse problem of Lagrangian dynamics. Journal of Physics A Mathematical and General . 1982
  • 5Henneaux M.On the inverse problem of the calculus of variations in field theory. Journal of Physics A Mathematical and General . 1984
  • 6Morando P,Vignolo S.A geometric apporach to constrained me- chanical systems, symmetries and inverse problems. Journal of Physics A Mathematical and General . 1998
  • 7Sarlet W,Thompson G,Prince G E.The inverse problem in the cal- culus of variations: The use of geometrical calculus in Douglas’’s analysis. Transactions of the American Mathematical Society . 2002
  • 8Guo Y X,Liu S X,Liu C, et al.Influence of nonholonomic con- straints on variations, symplectic structure and dynamics of me- chanical systems. Journal of Mathematical Physics . 2007
  • 9Cortés,J. Geometric, Control and Numerical Aspects of Nonholonomic Systems . 2002
  • 10Namark Y,Fufaev N A.Dynamics of non-holonomic systems. . 1972

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部