期刊文献+

RGO/Ag交替层层组装纯棉导电纱的制备及其性能

Preparation of Electrically Conducting Cotton Yarn by Layer-by-Layer Assembly with RGO/Ag and Its Property
下载PDF
导出
摘要 为了制备RGO/Ag交替层层组装纯棉导电纱,按组装顺序设计了6种方案,观察纱线表观结构并分析纱线TG、静态电阻、压力电阻及耐洗电阻。结果显示,外层包裹RGO的五层RGO/Ag交替组装所形成的导电纱线表面褶皱多,Ag层在石墨烯片层间镶嵌好,所形成导电纱线导电性能好;受压时,组装纱线伸长电阻增大但石墨烯间的层间距减小,使得石墨烯与纱线的界面结合好而所形成的导电纱线电阻减小. In order to prepare alternately assembled conductive cotton yarn,six schemes are designed,and the apparent structures of the yarn are observed and the conductive yarn TG,static resistance,pressure resistance and washing resistance are analyzed.The results show that there are more folds on the surface of the conductive yarn consisting of five alternative layers of RGO and Ag with an RGO outer wrapping,and the Ag layer is well inlaid between the graphene layers,so the conductive yarn has good electrical conductivity.The conductive yarn elongates under stress and its resistance increases,but the interlayer spacing between graphene decreases,making the interface boundary combination excellent and the resistance decrease.
作者 陈晓平 马伟伟 姚雪烽 胡嘉赟 辜宁霞 张焕侠 Chen Xiaoping;Ma Weiwei;Yao Xuefeng;Hu Jiayun;Gu Ningxia;Zhang Huanxia(College of Material and Textile Engineering,Jiaxing University;Huayan Elastic Manufacturing Co.,Ltd.,Jiaxing,Zhejiang 314000)
出处 《嘉兴学院学报》 2019年第6期113-117,共5页 Journal of Jiaxing University
基金 国家自然科学基金项目(F040406) 嘉兴市科技计划项目(2017AY13008) 嘉兴学院2018SRT项目(85178501)
关键词 石墨烯 纳米银 交替层层组装 导电纱线 graphene nano silver layer-by-layer assembly electrically conductive yarn
  • 相关文献

参考文献6

二级参考文献41

  • 1HUANG Ying HUANG Fei ZHAO Wentao SHI Ke ZHAO Li WANG Yanli.The study of electroless Ni-W-P alloy plating on glass fibers[J].Rare Metals,2007,26(4):365-371. 被引量:8
  • 2Rao C N R, Sood A K, Subrahmanyam K S, et al. Gra- phene: The new two-dimensional nanomaterial[J]. Ange- wandte Chemie International Edition, 2009, 48 ( 42 ): 7752-7777.
  • 3Yang W, Ratinae K R, Ringer S P, et al. Carbon nanomate- rials in biosensors: should you use nanotubes or graphene? [J]. Angewandte Chemie International Edition, 2010, 49 (12) : 2114-2138.
  • 4Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271.
  • 5Xie Y, Li Y, Niu L, et aL A. hover surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite [ J ]. Talanta, 2012, 100 (13) : 32-37.
  • 6Liu X, Wang F, Aizen R, et al. Graphene oxide/nucleic- acid-stabilized silver nanoclusters., functional hybrid materi- als for optical aptamer sensing and multiplexed analysis of pathogenic DNAs[J]. Journal of the American Chemical So- ciety, 2013, 135(32): 11832-11839.
  • 7Chen J, Bi H, Sun S, et al. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene[J]. ACS Ap- plied Materials & Interfaces, 2013, 5(4): 1408-1413.
  • 8Tien H W, Huang Y L, Yang S Y, eta]. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon, 2011, 49 (5) : 1550-1560.
  • 9Hsiao S T, Tien H W, Liao W H, et al. A highly electrically conductive graphene-silver nanowire hybrid nanomaterial for transparent conductive films[J]. Journal of Materials Chem- istry C, 2014, 2(35): 7284-7291.
  • 10De S, Higgins T M, Lyons P E, et al. Silver nanowire net- works as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios[J]. ACS Nano, 2009, 3(7) : 1767-1774.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部