期刊文献+

Effect of intracellular water release on hydro-mechanical behaviors of high kitchen waste content municipal solid waste 被引量:1

Effect of intracellular water release on hydro-mechanical behaviors of high kitchen waste content municipal solid waste
原文传递
导出
摘要 The release of intracellular water during degradation process contributes to the great leachate production and settlement of landfilled high kitchen waste content MSW(HKWC-MSW). An oven-drying and absorbent-paper combined method was proposed to measure the intracellular and interparticle water contents of HKWC-MSW. Two degradation experiments were carried out to study the release process of intracellular water and its effect on the hydro-mechanical behaviors of HKWC-MSW.It was found that the two degradation experiments showed similar degradation behaviors with BOD/COD decreasing with time in the early stage. In the first degradation experiment, most intracellular water was released during the first two months, and the degradation of degradable matter in kitchen waste(KW) was much slower than the release process of intracellular water. The particle size became smaller and the overall grain specific gravity increased during the fast release process of intracellular water.In the second degradation experiment, after two-year degradation, the total leachate production was about 45.2% of the initial wet weight of HKWC-MSW specimen. Water retention capacity θ_f increased from 0.23 to 0.58 during 1–69 d, which might be caused by the decrease of particle size and compression of waste skeleton. As almost all the intracellular water was released after 80-day degradation, during the latter stage of leachate drainage under gravity, θ_f decreased and was close to the total volumetric water content. The total compression strain was about 0.39. The secondary compression strain during 1–80 d(i.e., about 0.07)was considered to be mainly resulted by the release of intracellular water and the subsequent drainage of leachate, and it accounted for about 22.6% of the total secondary compression strain. The release of intracellular water during degradation process contributes to the great leachate production and settlement of landfilled high kitchen waste content MSW(HKWC-MSW). An oven-drying and absorbent-paper combined method was proposed to measure the intracellular and interparticle water contents of HKWC-MSW. Two degradation experiments were carried out to study the release process of intracellular water and its effect on the hydro-mechanical behaviors of HKWC-MSW.It was found that the two degradation experiments showed similar degradation behaviors with BOD/COD decreasing with time in the early stage. In the first degradation experiment, most intracellular water was released during the first two months, and the degradation of degradable matter in kitchen waste(KW) was much slower than the release process of intracellular water. The particle size became smaller and the overall grain specific gravity increased during the fast release process of intracellular water.In the second degradation experiment, after two-year degradation, the total leachate production was about 45.2% of the initial wet weight of HKWC-MSW specimen. Water retention capacity θ_f increased from 0.23 to 0.58 during 1–69 d, which might be caused by the decrease of particle size and compression of waste skeleton. As almost all the intracellular water was released after 80-day degradation, during the latter stage of leachate drainage under gravity, θ_f decreased and was close to the total volumetric water content. The total compression strain was about 0.39. The secondary compression strain during 1–80 d(i.e., about 0.07)was considered to be mainly resulted by the release of intracellular water and the subsequent drainage of leachate, and it accounted for about 22.6% of the total secondary compression strain.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第11期1907-1915,共9页 中国科学(技术科学英文版)
基金 supported by the National Basic Research Program of China(Grant No.2012CB719800) the National Natural Science Foundation of China(Grant Nos.51708508,41402249) the Zhejiang Provincial Natural Science Foundation(Grant Nos.LY17E080021,LY15E080021)
关键词 MUNICIPAL solid waste LANDFILL degradation INTRACELLULAR WATER particle size grain specific gravity WATER retention capacity settlement municipal solid waste landfill degradation intracellular water particle size grain specific gravity water retention capacity settlement
  • 相关文献

参考文献3

二级参考文献31

共引文献29

同被引文献29

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部