期刊文献+

Elastic anisotropy and its influencing factors in organic-rich marine shale of southern China 被引量:4

Elastic anisotropy and its influencing factors in organic-rich marine shale of southern China
原文传递
导出
摘要 Shale is observed to have strong anisotropy due to its unique mineralogy and microstructure, and this anisotropy property has significant impact on seismic and well-log data. The organic-rich marine shale in the southern and eastern Sichuan Basin is one of the most important shale-gas reservoir formations in China. To investigate the elastic anisotropy of this shale and its influencing factors, we performed ultrasonic velocity measurements, X-ray diffraction analysis, rock-eval pyrolysis and vitrinite reflectance measurement on the samples from the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation. The experimental results show the that:(1) the velocity anisotropy of the Wufeng-Longmaxi(WL) shale varies from 10% to 50%, and most samples have strong anisotropy;(2) the P-and S-wave anisotropy parameters(Thomsen's εand γ) increase with clay contents, but this relationship can be greatly affected by the clay orientation index;(3) organic matter content(OMC) is found to have little influence in seismic anisotropy for the over mature WL shale, whereas the OMC determines the magnitude of anisotropy of immature/mature shales(e.g. the Bakken shale or the Bazhenov shale) according to the published literatures, because organic matters in shales of different maturity have different morphologies and distributions;(4) the OMC of WL shale has positive correlation with quartz content, and this weakens the correlation between OMC and the magnitude of anisotropy to a certain extent. The results of this study provide an important rock-physics basis and data support for seismic anisotropy exploration, quantitative interpretation and resource evaluation of the organic-rich marine shales in southern China. Shale is observed to have strong anisotropy due to its unique mineralogy and microstructure, and this anisotropy property has significant impact on seismic and well-log data. The organic-rich marine shale in the southern and eastern Sichuan Basin is one of the most important shale-gas reservoir formations in China. To investigate the elastic anisotropy of this shale and its influencing factors, we performed ultrasonic velocity measurements, X-ray diffraction analysis, rock-eval pyrolysis and vitrinite reflectance measurement on the samples from the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation. The experimental results show the that:(1) the velocity anisotropy of the Wufeng-Longmaxi(WL) shale varies from 10% to 50%, and most samples have strong anisotropy;(2) the P-and S-wave anisotropy parameters(Thomsen’s εand γ) increase with clay contents, but this relationship can be greatly affected by the clay orientation index;(3) organic matter content(OMC) is found to have little influence in seismic anisotropy for the over mature WL shale, whereas the OMC determines the magnitude of anisotropy of immature/mature shales(e.g. the Bakken shale or the Bazhenov shale) according to the published literatures, because organic matters in shales of different maturity have different morphologies and distributions;(4) the OMC of WL shale has positive correlation with quartz content, and this weakens the correlation between OMC and the magnitude of anisotropy to a certain extent. The results of this study provide an important rock-physics basis and data support for seismic anisotropy exploration, quantitative interpretation and resource evaluation of the organic-rich marine shales in southern China.
机构地区 College of Geophysics
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第11期1805-1818,共14页 中国科学(地球科学英文版)
基金 supported by the National Science and Technology Major Project (Grant No. 2017ZX05018005) the National Natural Science Foundation of China (Grant Nos. 41474096, 41574108) the CNPC Science Research and Technology Development Project (Grant No. 2019A-3308)
关键词 Seismic rock physics Elastic anisotropy SHALE Organic MATTER CLAY MINERAL Seismic rock physics Elastic anisotropy Shale Organic matter Clay mineral
  • 相关文献

参考文献13

二级参考文献147

共引文献803

同被引文献52

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部