期刊文献+

加入惩罚因子的基于物品的协同过滤算法 被引量:5

Item-Based Collaborative Filtering Algorithm with Penalty Factor
原文传递
导出
摘要 作为业界应用最成功、最广泛的个性化推荐算法之一,协同过滤算法依然面临着诸多问题与挑战,数据的长尾分布便是其中之一。由于用户行为数据往往存在长尾分布的现象,同时采用Jaccard相似度作为物品相似度计算公式的协同过滤算法往往倾向于为用户推荐热门物品,致使热门的物品越来越热门,冷门的物品越来冷门。在不断给用户推荐物品的过程中,该传统协同过滤算法推荐给用户的物品集合越来越小,可能会渐渐失去个性化推荐的能力,影响用户体验,为降低热门物品对物品相似度计算结果的影响,本文提出一种基于物品流行度的惩罚因子(Penalty Factor)来修正物品相似度公式。通过在三个公开数据集上的实验验证与分析,该改进方法可在一定程度上提高推荐算法发掘新物品的能力。 As one of the most successful and widely used personalized recommendation algorithms in the industry,collaborative filtering algorithm still faces many problems and challenges, and the long-tail distribution of data is one of them. Because of the phenomenon of long-tail distribution of user behavior data, collaborative filtering algorithm using Jaccard similarity as the calculation formula of item similarity tends to recommend popular ones for users. In the process of continuously recommending items to users, the collection of items recommended by traditional collaborative filtering algorithm becomes smaller and smaller, which may gradually lose the ability of personalized recommendation and affect user experience. In order to reduce the impact of hot items on the results of similarity calculation, this paper proposes an item-based approach. Penalty Factor(Penalty Factor) of popularity is used to modify the similarity formula of items. Through experimental verification and analysis on three open datasets, the improved method can improve the ability of recommendation algorithm to discover new items to a certain extent.
作者 尹毫 焦文彬 史广军 何晓涛 Yin Hao;Jiao Wenben;Shi Guangjun;He Xiaotao(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100190,China)
出处 《科研信息化技术与应用》 2019年第2期10-19,共10页 E-science Technology & Application
基金 中科院网上采购平台应用示范项目(Y82971002401)
关键词 个性化推荐 协同过滤 惩罚因子 物品相似度 覆盖度 personalized recommendation collaborative filtering penalty factor item similarity coverage
  • 相关文献

参考文献1

二级参考文献14

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2夏培勇.个性化推荐技术中的协同过滤算法研究[D].青岛:中国海洋大学,2011.
  • 3Chedrawy Z,Abidi S S R. An adaptive personalized recom-mendation strategy featuring context sensitive content adapta-tion [C]. Sydney :Proceedings of Adaptive Hypermedia andAdaptive Web - based Systems ,2006.
  • 4Sarwar B,Konstan J,Borchers A. Using filtering agents to im-prove prediction quality in the groupLens research collabora-tive filtering system[ M]. New York: ACM Press, 1998.
  • 5Xie F,Xu M,Chen Z. RBRA: A simple and efficient rating-based recommender algorithm to cope with sparsity in recom-mender systems [ J ]. IEEE Computer Society, 2012,10(1109) : 306-311.
  • 6Feng Xie, Zhen Chen, Shang Jiaxing. Grey forecast modelfor accurate recommendation in presence of data sparsity andcorrelation [ J ]. Knowledge-Based Systems,2014, 69 ( 2 ):179 -190.
  • 7Jesus Bobadilla,Fernando Ortega, Antonio Hernando, et al.A collaborative filtering approach to mitigate the new usercold start problem [ J ]. Knowledge-Based Systems, 2012(26) :225 -238.
  • 8Sang Min Choi, Sang Ki Ko, Yo Sub Han. A movie recom-mendation algorithm based on genre correlations [ J ]. ExpertSystems with Applications, 2012 ( 7 ) : 8079 - 8085.
  • 9Bobadilla J, Ortega F,Hernando A, et al. A collaborative fil-tering approach to mitigate the new user cold-start problem[J]. Knowledge-Based Systems, 2012(3) : 225 -238.
  • 10Guo Guibing, Zhang Jie, Daniel Thalmann. Merging trust incollaborative filtering to alleviate data sparsity and cold start[J]. Knowledge-Based Systems,2014,57(2) :57-68.

共引文献1

同被引文献30

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部