期刊文献+

基于PyTorch的晶体结构势预测 被引量:1

Prediction for Potentials of Crystal Structures Based on PyTorch
原文传递
导出
摘要 近年来,材料数据进入了爆发式增长阶段,而实验和模拟方法来处理和分析材料数据工程量巨大并且十分耗时,如何用新方法从大量的数据中发现知识是未来材料研发的主要探索方向。新世纪以来,出现了将机器学习方法应用于材料科学领域研究的新课题。高效准确地得到结构能量是许多材料研究工作的基础,我们主要关注将机器学习方法与结构能量计算相结合这一方向。本文调研了目前已有的基于机器学习的结构势能拟合开源软件,分析它们的特点与优劣,并针对实际需求通过深度学习框架PyTorch对软件进行优化,增强机器学习模型的拟合能力。PyTorch可以利用GPU资源对数据进行快速学习,灵活地利用多种优化算法对不同体系的结构搭建合适的模型,并将模型保存以供后续研究。我们在人工智能计算及数据应用服务平台上对软件进行测试与优化,解决了一些在测试中发现的问题,对不同的体系结构的结构势能拟合效果进行了分析,提升软件对不同体系的结构势能拟合能力。 In recent years, data in the field of materials has entered an explosive growth stage, and analyzing the data with experimental and simulation methods are time consuming. How to use new methods to discover knowledge from a large amount of data is the main exploration direction for future research anddevelopment. Since the new century, new topics about machine learning methods in the field of materials science have emerged. Obtaining structural energy efficiently and accurately is the basis of many materials research. We mainly focus on the way to use machine learning methods in structural energy calculations. This paper investigates the existing ML-based open source software for structural potential energy fitting, analyzes their advantages and disadvantages, and optimizes the software through the deep learning framework PyTorch to enhance the fitting ability of the machine learning model. PyTorch can use GPU resources to learn from data quickly, use multiple optimization algorithms to build appropriate models flexibly for different systems with different atom types, and save the model for subsequent research. We tested and optimized our software on the artificial intelligence computing and data service platform, solved some problems found in the testing process, analyzed the results of potential energy fitting for different systems and improved the fitting ability of software based on them.
作者 刘学源 王彦棡 任荟颖 辛之夼 Liu Xueyuan;Wang Yangang;Ren Huiying;Xin Zhiguang(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《科研信息化技术与应用》 2019年第2期61-70,共10页 E-science Technology & Application
关键词 神经网络 结构势能拟合 PyTorch 人工智能平台 neural network structural potential fitting PyTorch artificial intelligence computing and data service platform
  • 相关文献

参考文献1

二级参考文献27

  • 1Banko M, Brill E. Scaling to very large corpora for natural language disambiguation. Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL), Toulouse, France, 2001:26-33.
  • 2Brants T, Popat C A, Xu P, et al. Large language models in machine translation. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Language Learning. Prague. Czech Republic, 2007:858-867.
  • 3Wang Y, Zhao X M, Sun Z L, et al. Peacock: learning long-tail topic features for industrial applications. ACM Transactions on Intelligent Systems and Technology, 2014, 9(4).
  • 4CCF Task Force on Big Data. Forecast for the development trend of big data in 2015. Communications of the China Computer Federation (CCCF), 2015, 11(1): 48-52.
  • 5Gonzalez J E. Emerging systems for large-scale machine learning. Proceedings of Tutorial on International Conference for Machine Learning(ICML) 2014, Beijing, China, 2014.
  • 6CCF Task Force on Big Data. White paper of China's big data technology and industrial development in 2014. Proceedings of Big Data Conference China, Beijing, China, 2014.
  • 7中国计算机学会大数据专家委员会.2015年中国大数据发展趋势预测.中国计算机学会通讯,2015,11(1):48-52.
  • 8中国计算机学会大数据专家委员会.2014年中国大数据技术与产业发展白皮书.2014中国大数据技术大会,北京,中国,2014.
  • 9Boehm M, Tatikonda S, Reinwald B, et al. Hybrid parallelization strategies for large-scale machine learning in systemML. Proceedings of the VLDB Endowment, Hangzhou, China, 2014.
  • 10Markl V. Breaking the chains: on declarative data analysis and data independence in the big data era. Proceedings of the VLDB Endowment, Hangzhou, China, 2014.

共引文献50

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部