期刊文献+

联合分类与匹配的FAQ问答模型 被引量:1

Combining Text Classification and Text Matching for FAQ-Based Question Answering
原文传递
导出
摘要 文本分类或文本匹配是解决基于常见问题和解答(FAQ)问答的2个途径.单独使用分类方法不能有效利用标准问题本身的信息,而单独使用匹配方法时,负样本的选择很困难,为此,提出一类将文本分类和文本匹配方法相结合的模型,不仅能选择真正需要区分的负例,并且能够有效利用标准问题的信息.实验结果表明,提出的模型在多个FAQ问答数据上能达到最好性能. Text classification and text matching are two ways to solve the frequently asked questions(FAQ)-based question answering.However,using the text classification method alone cannot effectively utilize the information of the standard question itself.When the text matching method is used alone,the selection of the negative sample is a very difficult problem.A series of models that combine text classification and text matching methods are proposed,which not only can select negative examples that really need to be distinguished,but also can effectively use the information of standard questions.Experiments show that the proposed models achieve the best performance on multiple FAQ-based question answering data.
作者 莫歧 王小捷 MO Qi;WANG Xiao-jie(Center for Intelligence of Science and Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第4期76-81,共6页 Journal of Beijing University of Posts and Telecommunications
关键词 问答模型 文本分类 文本匹配 question answering text classification text matching
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部