期刊文献+

基于机器学习的无线信道簇的提取与轨迹追踪 被引量:4

The Extraction and Tracking Trajectory of Wireless Channel Tap Clusters Based on Machine Learning
原文传递
导出
摘要 针对时变无线信道抽头簇的提取和轨迹追踪提出了一种新方法:首先在时延-幅度维上采用反向传播(BP)神经网络对无线信道冲激响应(CIR)进行去噪,然后利用k-means聚类算法对有效抽头信号进行分簇,再用基于密度的空间聚类(DBSCAN)算法去除各个簇峰值抽头中的异常值,最后采用多项式拟合对去除异常值后的簇峰值抽头进行拟合,得到其时间变化轨迹.经过仿真和实测数据验证,该方法得到的簇峰值时间变化轨迹与根据几何关系得到的结果一致. A new method for extraction and tracking trajectory of dynamic wireless channel tap clusters is proposed.First,the channel impulse response(CIR)denoising is achieved by back propagation(BP)neural network in time delay-amplitude dimension.Then effective taps are clustered by k-means clustering algorithm.Next,density-based spatial clustering of applications with noise(DBSCAN)algorithm is applied to remove the abnormal peak taps for every cluster.Finally,the trajectory of cluster peak taps is obtained by polynomial fitting.The simulation result shows that trajectory obtained by proposed method is approximate to geometric calculation result.Moreover,the analysis result of high speed railway measured data is consistent with the actual observations.
作者 张嘉驰 刘留 周涛 王凯 朴哲岩 ZHANG Jia-chi;LIU Liu;ZHOU Tao;WANG Kai;PIAO Zhe-yan(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;School of Rail Transportation,Shandong Jiaotong University,Jinan 250357,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第4期126-132,共7页 Journal of Beijing University of Posts and Telecommunications
基金 北京市自然科学基金-海淀原始创新联合基金项目(L172030) 中央高校基本科研业务费专项资金项目(2018JBM003) 泛网无线通信教育部重点实验室(北京邮电大学)基金项目KFKT-2018105
关键词 无线信道 神经网络 基于密度的聚类 抽头簇 轨迹追踪 wireless channel neural network density-based clustering tap clusters tracking trajectory
  • 相关文献

参考文献3

二级参考文献17

  • 1吕新正,魏平,肖先赐.利用高阶累积量实现数字调制信号的自动识别[J].电子对抗技术,2004,19(6):3-6. 被引量:42
  • 2Narandzic M, Schneider C, Thoma R, et al. Comparison of SCM, SCME, and WINNER channel models[C]//Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE, 2007: 413-417.
  • 3Samimi M K, Rappaport T S. 3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications[J]. arXiv preprint arXiv:1 503.05619, 2015.
  • 4Samimi M K, Rappaport T S. Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels[C]IIGlobal Communications Conference (GLOBECOM), 2014 IEEE. IEEE, 2014: 3483-3489.
  • 5Wang L, Chen J, Wei X, et al. First-order-reflection MIMO channel model for 60 GHz NLOS indoor WLAN systems[C]IICommunication Systems (lCCS), 2014 IEEE International Conference on. IEEE, 2014: 298-302.
  • 6Bai T, Desai V, Heath R W. Millimeter wave cellular channel models for system evaluation[C]11 Computing, Networking and Communications (ICNC), 2014 International Conference on. IEEE, 2014: 178-182.
  • 7Weng J, Tu X, Lai Z, et al. Indoor Massive MIMO Channel Modelling Using Ray-Launching Simulation[J]. International Journal of Antennas and Propagation, 2014, 2014.
  • 8Zheng K, Ou S, Yin X. Massive MIMO Channel Models: A Survey[J]. International Journal of Antennas and Propagation, 2014, 2014.
  • 9Nawaz S J, Riaz M, Khan N M, et al. Temporal Analysis of a 3D Ellipsoid Channel Model for the Vehicle-to-Vehicle Communication Environments[Jj. Wireless Personal Communications, 2015: 1-14.
  • 10Avazov N, Patzold M. A Novel Wideband MIMO Car-to-Car Channel Model Based on a Geometrical Semicircular Tunnel Scattering Model[J]. 2015.

共引文献64

同被引文献40

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部