摘要
针对时变无线信道抽头簇的提取和轨迹追踪提出了一种新方法:首先在时延-幅度维上采用反向传播(BP)神经网络对无线信道冲激响应(CIR)进行去噪,然后利用k-means聚类算法对有效抽头信号进行分簇,再用基于密度的空间聚类(DBSCAN)算法去除各个簇峰值抽头中的异常值,最后采用多项式拟合对去除异常值后的簇峰值抽头进行拟合,得到其时间变化轨迹.经过仿真和实测数据验证,该方法得到的簇峰值时间变化轨迹与根据几何关系得到的结果一致.
A new method for extraction and tracking trajectory of dynamic wireless channel tap clusters is proposed.First,the channel impulse response(CIR)denoising is achieved by back propagation(BP)neural network in time delay-amplitude dimension.Then effective taps are clustered by k-means clustering algorithm.Next,density-based spatial clustering of applications with noise(DBSCAN)algorithm is applied to remove the abnormal peak taps for every cluster.Finally,the trajectory of cluster peak taps is obtained by polynomial fitting.The simulation result shows that trajectory obtained by proposed method is approximate to geometric calculation result.Moreover,the analysis result of high speed railway measured data is consistent with the actual observations.
作者
张嘉驰
刘留
周涛
王凯
朴哲岩
ZHANG Jia-chi;LIU Liu;ZHOU Tao;WANG Kai;PIAO Zhe-yan(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;School of Rail Transportation,Shandong Jiaotong University,Jinan 250357,China)
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2019年第4期126-132,共7页
Journal of Beijing University of Posts and Telecommunications
基金
北京市自然科学基金-海淀原始创新联合基金项目(L172030)
中央高校基本科研业务费专项资金项目(2018JBM003)
泛网无线通信教育部重点实验室(北京邮电大学)基金项目KFKT-2018105
关键词
无线信道
神经网络
基于密度的聚类
抽头簇
轨迹追踪
wireless channel
neural network
density-based clustering
tap clusters
tracking trajectory