期刊文献+

On scaling invariance and type-Ⅰ singularities for the compressible Navier-Stokes equations 被引量:2

On scaling invariance and type-Ⅰ singularities for the compressible Navier-Stokes equations
原文传递
导出
摘要 We find a new scaling invariance of the barotropic compressible Navier-Stokes equations. Then it is shown that type-Ⅰ singularities of solutions with■ can never happen at time T for all adiabatic number γ 1. Here κ > 0 does not depend on the initial data.This is achieved by proving the regularity of solutions under■ This new scaling invariance also motivates us to construct an explicit type-Ⅱ blowup solution for γ > 1. We find a new scaling invariance of the barotropic compressible Navier-Stokes equations. Then it is shown that type-Ⅰ singularities of solutions with■ can never happen at time T for all adiabatic number γ 1. Here κ > 0 does not depend on the initial data.This is achieved by proving the regularity of solutions under■ This new scaling invariance also motivates us to construct an explicit type-Ⅱ blowup solution for γ > 1.
出处 《Science China Mathematics》 SCIE CSCD 2019年第11期2271-2286,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11725102) National Support Program for Young Top-Notch Talents SGST 09DZ2272900 from Shanghai Key Laboratory for Contemporary Applied Mathematics supported by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants (Grant Nos. CUHK-14305315, CUHK-14300917 and CUHK-14302917) NSFC/RGC Joint Research Scheme Grant (Grant No. N-CUHK 443-14) a Focus Area Grant from the Chinese University of Hong Kong
关键词 type-Ⅰ singularity COMPRESSIBLE NAVIER-STOKES equations SCALING INVARIANCE BLOWUP rate type-Ⅰ singularity compressible Navier-Stokes equations scaling invariance blowup rate
  • 相关文献

参考文献1

二级参考文献35

  • 1P. Constantin,C. Fefferman,E. S. Titi,A. Zarnescu.Regularity of Coupled Two-Dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems[J]. Communications in Mathematical Physics . 2007 (3)
  • 2Yonggeun Cho,Hyunseok Kim.On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities[J]. manuscripta mathematica . 2006 (1)
  • 3David Hoff.Compressible Flow in a Half-Space with Navier Boundary Conditions[J]. Journal of Mathematical Fluid Mechanics . 2005 (3)
  • 4Song Jiang,Ping Zhang.On Spherically Symmetric Solutions?of the Compressible Isentropic Navier–Stokes Equations[J]. Communications in Mathematical Physics . 2001 (3)
  • 5David Hoff.Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[J]. Archive for Rational Mechanics and Analysis . 1995 (1)
  • 6R. J. DiPerna,P. L. Lions.Ordinary differential equations, transport theory and Sobolev spaces[J]. Inventiones Mathematicae . 1989 (3)
  • 7J. T. Beale,T. Kato,A. Majda.Remarks on the breakdown of smooth solutions for the 3-D Euler equations[J]. Communications in Mathematical Physics . 1984 (1)
  • 8Akitaka Matsumura,Takaaki Nishida.Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[J]. Communications in Mathematical Physics . 1983 (4)
  • 9V. A. Solonnikov.Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid[J]. Journal of Soviet Mathematics . 1980 (2)
  • 10Jean Leray.Sur le mouvement d’un liquide visqueux emplissant l’espace[J]. Acta Mathematica . 1934 (1)

共引文献14

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部