摘要
We report properties of contact resistances observed on pentacene organic field-effect transistors(OFET) with four different source/drain electrodes, namely, copper(Cu), gold(Au), silver(Ag), and germanium(Ge). The metals were selected to provide a wide range of energy barriers for charge injection, from blocking contact to smooth injection. All OFETs exhibited strong voltage dependence of the contact resistance, even for devices with smooth injection, which is in strong disagreement with the definition of ohmic contacts. A comparison with current crowding, resistive network, Fowler–Nordheim tunneling, and electric field enhanced thermionic injection(Schottky emission) pointed to importance of local electric fields and/or electrostatic field charges.
We report properties of contact resistances observed on pentacene organic field-effect transistors(OFET) with four different source/drain electrodes, namely, copper(Cu), gold(Au), silver(Ag), and germanium(Ge). The metals were selected to provide a wide range of energy barriers for charge injection, from blocking contact to smooth injection. All OFETs exhibited strong voltage dependence of the contact resistance, even for devices with smooth injection, which is in strong disagreement with the definition of ohmic contacts. A comparison with current crowding, resistive network, Fowler–Nordheim tunneling, and electric field enhanced thermionic injection(Schottky emission) pointed to importance of local electric fields and/or electrostatic field charges.
基金
Project supported by the Slovak Research and Development Agency(Grant Nos.APVV-17-0501 and APVV-17-0522)
the Slovak Grant Agency for Science(Grants No.1/0776/15)