摘要
为全面提升自治机器人在搬运行进过程中的的绝对定位能力,提出基于粒子滤波的机器人搬运轨迹协同定位方法。在粒子滤波跟踪框架中,通过选取定位隐含层的方式,计算轨迹滤波梯度,完成基于粒子滤波的轨迹定位环境搭建。在此基础上,利用满足标定规则的粒子滤波器,校正机器人搬运轨迹的协同误差,并以此为条件推导出定位条件熵,完成基于粒子滤波机器人搬运轨迹协同定位方法的顺利应用。模拟对比实验结果显示,应用新型轨迹协同定位方法后,绝对定位精度可达到90%以上,传统定位方法遗留问题得到有效解决。
In order to improve the absolute positioning and relative positioning ability of autonomous robots in the process of moving,a coordinated positioning method based on particle filter is proposed. In the framework of particle filter tracking,the trajectory filtering gradient is calculated by choosing the way of locating the hidden layer,and the trajectory location environment based on particle filter is built. On this basis,the particle filter satisfying the calibration rules is used to correct the cooperative error of the robot’s trajectory. Based on this condition,the positioning condition entropy is deduced,and the successful application of the cooperative positioning method of the robot’s trajectory based on particle filter is completed. The simulation results show that the absolute positioning accuracy and relative positioning accuracy can reach more than 90% after the application of the new trajectory cooperative positioning method,and the problems left by the traditional positioning method can be effectively solved.
作者
萧志聪
叶迅
XIAO Zhi cong;YE Xun(School of Physics&Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China;Guangzhou College of South China University of Technology,College of Automobile and Transportation Engineering,Guangzhou 510800,China)
出处
《电子设计工程》
2019年第22期184-187,193,共5页
Electronic Design Engineering
关键词
粒子滤波
搬运轨迹
协同定位
跟踪框架
隐含层
协同校正
定位条件熵
particle filter
handling trajectory
cooperative positioning
tracking framework
hidden layer
cooperative correction
positioning condition entropy