摘要
在手写数字识别数据集(MNIST)情景下,为了提高卷积神经网络的识别正确率,提出了一种改进的基于卷积神经网络(CNN)的多尺度特征识别算法.首先,利用卷积操作和池化操作提取图像中的全局特征及局部特征,通过二次卷积与特征融合获得数字图像的多尺度特征.然后,将多尺度特征送入全连接网络和SoftMax分类器,实现手写数字图像识别.最后,通过对不同网络结构的CNN算法进行评估表明,本文提出的算法可以有效提高网络精度,具有较好的泛化能力.
In order to improve the recognition accuracy of convolutional neural networks(CNN)within MINIST handwritten digit recognition data sets,this paper proposes an improved multi-scale features recognition algorithm based on CNN.Firstly,the global and local features are extracted by convolution and pooling operations,and multi-scale features of digital images are obtained by quadratic convolution and feature fusion.Then,multi-scale features are fed into full-connection network and SoftMax classifier to recognize handwritten digital images.Finally,a comprehensive evaluation of CNN algorithms with different network structures shows that the method can effectively improve network accuracy,and has good generalization ability.
作者
仲会娟
谢朝和
刘文武
刘大茂
ZHONG Huijuan;XIE Chaohe;LIU Wenwu;LIU Damao(College of Artificial Intelligence,Yango University,FuZhou,Fujian 350015)
出处
《绵阳师范学院学报》
2019年第11期22-26,共5页
Journal of Mianyang Teachers' College
基金
2018年福建省中青年教师教育科研项目(JT180724)
关键词
卷积神经网络
多尺度特征
手写数字识别数据集
全局特征
局部特征
convolutional neural networks(CNN)
multi-scale features
handwritten digit recognition data sets(MNIST)
global features
local features