摘要
应用Lebesgue空间的相关理论,研究了一类变量核奇异积分算子TΩ的有界性,证明了当核函数Ω(x,z)满足一定条件时,TΩ是从L^∞(R^n)到RBMO(R^n)的有界算子,从而推广了以往非变量核的相关结果.
By applying the related properties of Lebesgue space,a class of singular integral operators with variable kernels is discussed.The boundedness TΩ of L^∞(R^n) on RBMO(R^n) spaces is proved when the kernel function Ω(x,z) satisfying certain conditions,which generalized the previous results of the non-variable kernel.
作者
杨旭升
张承峰
YANG Xu-sheng;ZHANG Cheng-feng(School of Education,Lanzhou University of Arts and Science,Lanzhou 730000,China;Department of Basic Courses,Qingyang Vocational and Technical College,Qingyang 745000,Gansu,China)
出处
《兰州文理学院学报(自然科学版)》
2019年第6期19-21,共3页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
国家自然科学基金(11361053)
甘肃省高等学校科研项目(2018A-248,2017A-100)