期刊文献+

一类变量核奇异积分算子的RBMO估计

A RBMO Estimate for a Class of Singular Integral Operator with Variable Kernel
下载PDF
导出
摘要 应用Lebesgue空间的相关理论,研究了一类变量核奇异积分算子TΩ的有界性,证明了当核函数Ω(x,z)满足一定条件时,TΩ是从L^∞(R^n)到RBMO(R^n)的有界算子,从而推广了以往非变量核的相关结果. By applying the related properties of Lebesgue space,a class of singular integral operators with variable kernels is discussed.The boundedness TΩ of L^∞(R^n) on RBMO(R^n) spaces is proved when the kernel function Ω(x,z) satisfying certain conditions,which generalized the previous results of the non-variable kernel.
作者 杨旭升 张承峰 YANG Xu-sheng;ZHANG Cheng-feng(School of Education,Lanzhou University of Arts and Science,Lanzhou 730000,China;Department of Basic Courses,Qingyang Vocational and Technical College,Qingyang 745000,Gansu,China)
出处 《兰州文理学院学报(自然科学版)》 2019年第6期19-21,共3页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 国家自然科学基金(11361053) 甘肃省高等学校科研项目(2018A-248,2017A-100)
关键词 奇异积分算子 尺寸条件 RBMO(R^n) 变量核 singular integral operator size conditions RBMO(R^n) variable kernel
  • 相关文献

参考文献7

二级参考文献29

  • 1王素萍,陶双平,邵旭馗.变量核Marcinkiewicz积分交换子在齐次Morrey-Herz空间中的有界性[J].系统科学与数学,2013,33(12):1498-1506. 被引量:3
  • 2丁勇
  • 3Calderon,A.P.and Zygmund,A.,On singular integrals,Amer.J.Math.,1956,78:289-309.
  • 4Seeger,A.,Singular integral operators with rough convlution kernels,J.Amer.Math.Soc.,1996,9:95-105.
  • 5Leckband,M.A.,Structure results on the maximal Hilbert transform and two-weight norm inequalities,Indiana.Univ.Math.J.,1985,34:259-275.
  • 6Coifman,R.R.and Rochberg,R.,Another characterization of BMO,Proc.Amer.Math.Soc.,1980,79:249-254.
  • 7Sun Y.and Zhang Z.,A note on the existence and boundedness of singular integrals,J.Math.Anal.Appl.,2002,273:370-377.
  • 8Perez,C.,Endpoint estimates for commutators of singular integral operators,J.Funct.Anal.,1995,128:
  • 9Admas,R.A.,Sobolev Spaces,New York:Academic Press,1975.
  • 10Hu G.,L^p boundedness for the multilinear singular integral operator,Integr.equ.oper.theory,2005,52:437-449.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部