期刊文献+

纳米流体中固-液作用影响界面热阻及导热率的分子动力学研究 被引量:4

Molecular Dynamics Study on Solid-liquid Interaction Affecting Interface Thermal Resistance and Thermal Conductivity of Nanofluids
原文传递
导出
摘要 纳米流体中固-液界面处由于声子散射形成界面热阻,给纳米流体内热量传递带来阻力。为研究界面热阻对纳米流体导热率的影响,以Cu-Ar纳米流体为基础模型,采用非平衡分子动力学方法研究了纳米粒子-流体相互作用强度与界面热阻的定量关系。研究表明,随着纳米粒子-流体相互作用强度增大,界面热阻显著降低,其机制在于流体分子的吸附作用增强了纳米粒子表面原子的振动强度,从而促进了纳米粒子与流体之间的热传递。增大纳米粒子-流体相互作用强度可显著提高纳米流体导热率,且界面热阻对纳米流体导热率的影响程度随纳米粒子尺寸减小而增大。 Due to the phonon scattering at the solid-liquid interface,thermal resistance is formed in nanofluids,which bring a resistance to heat transfer inside the nanofluids.Non-equilibrium molecular dynamics simulations were performed for the Cu-Ar nanofluids to investigate the effect of interface thermal resistance on the thermal conductivity of nanofluids.The results show that the interface thermal resistance decreases significantly with the increase of the inter-atomic interaction strength between nanoparticles and fluids.The mechanism is that the adsorption of fluid molecules enhanced the vibration strength of surface atoms of the nanoparticles,which promoted the heat transfer between the nanoparticles and fluids.The nanofluid has higher thermal conductivity when the interaction strength between nanoparticles and fluids is larger,and the impact of interface thermal resistance can be more obvious with the decrease of nanoparticle size.
作者 周璐 马红和 ZHOU Lu;MA Hong-He(School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第11期2603-2608,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51706151)
关键词 纳米流体 界面热阻 导热率 非平衡分子动力学 nanofluids interface thermal resistance thermal conductivity nonequilibrium molecular dynamics
  • 相关文献

参考文献6

二级参考文献59

  • 1彭小飞,俞小莉,余凤芹.低浓度纳米流体比热容试验研究[J].材料科学与工程学报,2007,25(5):719-722. 被引量:6
  • 2李强,宣益民.Convective heat transfer and flow characteristics of Cu-water nanofluid[J].Science China(Technological Sciences),2002,45(4):408-416. 被引量:30
  • 3刘玉东,李夔宁,童明伟,何钦波,刘彬,陈胜立.TiO_2-水纳米流体的粘度修正公式[J].重庆大学学报(自然科学版),2006,29(9):52-55. 被引量:8
  • 4郭顺松,骆仲泱,王涛,赵佳飞,岑可法.SiO_2纳米流体粘度研究[J].硅酸盐通报,2006,25(5):52-55. 被引量:14
  • 5彭小飞,俞小莉,夏立峰,钟勋.低浓度纳米流体粘度变化规律试验[J].农业机械学报,2007,38(4):138-141. 被引量:17
  • 6Xie Huaqing,Wang Jinchang,Xi Tonggeng,et al.Thermal conductivity enhancement of suspensions containing nano-sized alumina particles.J.Applied Physics,2002,9(4):4568-4572
  • 7Lee S,Choi S U S.Measuring thermal conductivity of fluids containing oxide nanoparticles.Transaction of the ASME,1999,121(5):280-289
  • 8Maxwell-Garnett J C.Colors in metal glasses and in metallic films.Philos.Trans.Roy.Soc.A,1904,203:385-420
  • 9Bruggeman D A G.Berechnung verschiedener physikalischer konstanten con heterogenen substanzen(Ⅰ):Kielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen.Annlen der Physik.Leipzig,1935,24:636-679
  • 10Wang Buxuan,Zhou Leping,Peng Xiaofeng.A fractal model for predicting the effective thermal of liquid with suspension of nanoparticles.Int.J.Heat and Mass Transfer,2003,46:2665-2672

共引文献38

同被引文献27

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部