期刊文献+

基于各类支持度阈值独立挖掘的关联改进算法 被引量:14

An associative classification algorithm based on various class-support thresholds and independent mining rules
下载PDF
导出
摘要 关联分类及较多的改进算法很难同时既具有较高的整体准确率又有较好的小类分类性能。针对此问题,提出了一种基于类支持度阈值独立挖掘的关联分类改进算法—ACCS。ACCS算法的主要特点是:(1)根据训练集中各类数量大小给出每个类类支持度阈值的设定方法,并基于各类的类支持度阈值独立挖掘该类的关联分类规则,尽量使小类生成更多高置信度的规则;(2)采用类支持度对置信度相同的规则排序,提高小类规则的优先级;(3)用综合考虑置信度和提升度的新的规则度量预测未知实例。在多个数据集上的实验结果表明,相比多种关联分类改进算法,ACCS算法有更高的整体分类准确率,且在不平衡数据上也能取得较好的小类分类性能。 Associative classification algorithm and its existing improved algorithms cannot achieve both high overall accuracy and good minority class classification.To solve this problem,we propose an improved associative classification algorithm based on various class-support thresholds(ACCS)independent mining rules.Its main featuresare:(1)ACCS sets the support threshold of each class according to the class size in the training data,and extracts the associative classification rule of each class separately based on the class-support threshold in order to get higher confidence rules of minority classes;(2)ACCS uses the class-support threshold to rank the rules with the same confidence for increasing the priority of the minority classes;(3)ACCS combines confidence and lift degrees together to predict unknown instances.The experimental results on multiple datasets show that ACCS can achieve higher overall classification accuracy than the existing associative algorithms,and can also get good minority class classification performance in imbalanced data.
作者 周忠眉 李家辉 ZHOU Zhong-mei;LI Jia-hui(School of Computer Science,Minnan Normal University,Zhangzhou 363000;Key Laboratory of Data Science and Intelligence Application,Fujian Province University,Zhangzhou 363000,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第11期2088-2094,共7页 Computer Engineering & Science
基金 福建省自然科学基金(2018J01545)
关键词 关联分类 类支持度阈值 类支持度 分类准确率 associative classification class support threshold class support classification accuracy
  • 相关文献

参考文献1

二级参考文献19

  • 1Liu B, Hsu W, Ma Y M. Integrating Classification and Association Rule Mining// Proc of the 4th International Conference on Know- ledge Discovery and Data Mining. New York, USA, 1998:80-86.
  • 2Quinlan J R. C4.5 : Programs for Machine Learning. San Francis- co, USA: Morgan Kaufmann, 1992.
  • 3Li W M, Han J W, Pei J. CMAR: Accurate and Efficient Classifi- cation Based on Multiple Class-Association Rules // Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001 : 369-376.
  • 4Simon G J, Kumar V, Li P W. A Simple Statistical Model and Association Rule Filtering for Classification//Proc of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011 : 823-831.
  • 5Yu K, Wu X D, Ding W, et al. Causal Associative Classification //Pmc of the 11 th IEEE International Conference on Data Mining. Vancouver, Canada, 2011 : 914-923.
  • 6Chen C H, Chiang R D, Lee C M, et al. Improving the Perfor- mance of Association Classifiers by Rule Prioritization. Knowledge- Based Systems, 2012, 36:59-67.
  • 7Huang Z X, Zhou Z M, He T Z. Resolving Rule Conflicts Based on Nafve Bayesian Model for Associative Classification. Journal of Digital Information Management, 2014, 12( 1 ) : 36-43.
  • 8Cerf L, Gay D, Selmaoui-Foleher N, et al. Parameter-Free Classi- fication in Multi-class Imbalanced Data Sets. Data & Knowledge Engineering, 2013, 87 : 109-129.
  • 9Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules //Proc of the 20th International Conference on Very Large Data Bases. Santiago, Chile, 1994:487-499.
  • 10Han J W, Pei J, Yin Y W. Mining Frequent Patterns without Can- didate Generation. Sigmod Record, 2000, 29(2) : 1-12.

共引文献10

同被引文献208

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部