期刊文献+

汉语句法分析中的论元关系模型研究 被引量:1

Research on argument relationship model based in syntactic analyses
下载PDF
导出
摘要 近年来,实体挖掘技术已经成为文本信息处理领域的研究热点,有广泛的应用前景,但目前实体挖掘技术通常缺少句法层面的分析,很难从语句中准确抽取关键性词汇,并且抽取实体的过程容易忽略主客体的动作关联.针对这一问题,建立一个适用于汉语句法分析的论元关系模型.使用多值递归函数识别句型结构并划分句法功能语块,根据句型结构抽取动作的施体和受体,建立论元关系模型.多值递归函数的分析窗口涵盖整个语句,函数递归地探索整个解空间,获取全局最优解.此外,层次分解机制可以识别处理嵌套句和歧义句,能够抽取出更有价值的句法成分,对长语句和复杂语句有更好的适应能力. In recent years,the technology of entity extraction has become a hot research point in field of text information processing for its broad application prospect.Currently,the technology is usually lack of syntactic analyses so that it is not only hard to extract crucial words from sentences,but also easy to ignore action relations between subjects and objects during the period of extracting entities.To solve this problem,this paper establishes an Argument Relationship Model(ARM)which orients to Chinese syntactic analyses.Multivalued Recursive Functions(MRF)is taken into recognitions of sentence patterns and segment syntactic function chunks.Then senders and receptors of actions are extracted and ARM is established on the basis of sentence patterns.Analyzing window of MRF covers the whole sentence and it can explore the whole solution space recursively for its global optimal solution.What’s more,the Layer Decomposition Mechanism is useful for recognizing and processing nested or ambiguous sentences in order to extract more valuable syntactic components from long or complex sentences.
作者 刘作国 陈笑蓉 Liu Zuoguo;Chen Xiaorong(College of Computer Science and Technology,Guizhou University,Guiyang,550025,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期1010-1019,共10页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61363028)
关键词 句法分析 论元关系 语块分割 句型识别 syntactic analyses argument relationship chunks segment sentence patterns recognition
  • 相关文献

参考文献4

二级参考文献44

  • 1叶正,林鸿飞,苏绥,刘菁菁.基于支持向量机的人物属性抽取[J].计算机研究与发展,2007,44(z2):271-275. 被引量:11
  • 2Blunschi L, Dittrich J P, Girard O, et al. A dataspace odyssey: The iMeMex personal dataspace management system [C] //Proc of the 6th Conf on Innovative Data Systems Research (CIDR'07). New York: ACM, 2007: 114-119.
  • 3Salles M A V, Dittrich J, Karakashian S K. iTrails: Pay-as- you-go information integration in dataspaees [C] //Proc of the 33rd Very Large Data Base (VLDB'07). New York: ACM, 2007:663-667.
  • 4Salles M A V, Dittrich J, Blunschi L. Adding structure to web search with iTrails [C] //Proc of the 24th Int Conf on Data Engineering (ICDE'08). Piscataway, NJ: IEEE, 2008: 262-265.
  • 5Dittrich J, Salles M A V, Blunschi L. Managing personal information using iTrails [C] //Proe of the 3rd Personal Information Management Workshop (PIM'08). New York: ACM, 2008.
  • 6张相於,李玉坤,寇玉波.OrientSpace:个人数据空间管理原型系统[R/OL].(20080801)[20i2-10-01].http://idke.ruc.edu.cn/reports/report2008/Systems/OrientSpace.pdf.
  • 7Li Yukun, Meng Xiaofeng, Kou Yubo. An efficient method for constructing personal dataspace [C] //Proc of the 2nd Web Information Systems and Applications Conference (WlSA'09). Piscataway, NJ: IEEE, 2009.
  • 8Huong N, Thanh N, Hoa N, et al. Querying wikipedia documents and relationships [C] // Proe of the 13th Int Workshop on the Web and Dadabases (WebDB). New York: ACM, 2010; 1-6.
  • 9Getoor L, Taskar B. Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning)[M]. Cambridge, MA, MIT Press, 2007.
  • 10Sun Yizhou, Rick B, Manish G, et al. Co-author relationship prediction in heterogeneous bibliographic networks [C] // Proe of the 3rd Advances in Social Network Analysis and Mining. Piscataway, NJ: IEEE, 2011:121-128.

共引文献37

同被引文献19

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部