摘要
家庭智能用电中基于非侵入式监测的电器分类识别及分解有助于用户实时获取用电信息及电网公司进行电力供需平衡。本文提出以累积和极差平方检测暂态功率事件,采用BP神经网络识别电器种类,以及使用基于波形拟合的遗传优化方法进行负荷分解。
Classification,identification and decomposition of electrical appliances based on non-intrusive monitoring in smart household electricity use can help users obtain real-time electricity information and power grid companies balance power supply and demand.In this paper,cumulative sum range square is used to detect transient power events,BP neural network is used to identify electrical appliances,and genetic optimization method based on waveform fitting is used to decompose loads.
作者
张林林
莫琦
古栋笙
莫松颖
林建宏
ZHANG Lin-lin;MO Qi;GU Dong-sheng;MO Song-ying;LIN Jian-hong(Guangdong University of Petrochemical Technology,Maoming Guangdong 525000)
出处
《数字技术与应用》
2019年第9期101-102,共2页
Digital Technology & Application