期刊文献+

非奇异M-矩阵及其逆矩阵Hadamard积最小特征值的新下界

New Lower Bound for the Minimum Eigenvalue of the Hadamard Product of Nonsingular M-matrix and Its Inverse
下载PDF
导出
摘要 针对非奇异M-矩阵及其逆矩阵Hadamard积的最小特征值问题,首先,回顾了已有文献应用矩阵的特征值存在域定理和逆矩阵元素的估计式;其次,结合M-矩阵Hadamard积的相关性质特征及不等式的构造、放缩技巧,给出了非奇异M-矩阵与其逆矩阵是双随机矩阵的Hadamard积的最小特征值下界τ(A°A^-1)的一个仅与A矩阵的元素相关的估计式,推广了已有文献的结果;最后,用数值例子表明所给估计式的下界比已有结果得到的下界更精确. For the problem of the minimum eigenvalue for the Hadamard product on nonsingular M-matrix and its Inverse,firstly,recalling the domain theorem of the eigenvalues for the matrix and the estimation formula for the elements of inverse matrix are used in the literature.Secondly,when A is nonsingular M-matrix and A^-1 are doubly stochastic,τ(A ° A^-1)is given by combining with the relative properties of the Hadamard product of M-matrix and the construction and reduction techniques of inequalities,which is only related to the elements of the matrix,and theoretical analysis proves that it improves the results of existing literature;Finally,numerical examples show that the new lower bound is more accurate than the existing lower bound.
作者 周平 ZHOU Ping(School of Mathematics and Engineering,Wenshan University,Yunnan Wenshan 663099,China)
出处 《重庆工商大学学报(自然科学版)》 2019年第6期14-17,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 云南省科技厅应用基础研究项目(2015FD050) 文山学院科学研究项目(15WSY11,2018Y04)
关键词 M-矩阵 HADAMARD积 特征值存在域定理 下界 M-matrix Hadamard product eigenvalue existence domain theorem lower bound
  • 相关文献

参考文献1

二级参考文献12

  • 1程光辉,成孝予,黄廷祝.M-矩阵和H-矩阵在Fan积下的Oppenheim型不等式[J].纯粹数学与应用数学,2006,22(2):253-255. 被引量:4
  • 2陈景良;陈向晖.特殊矩阵[M]北京:清华大学出版社,2000.
  • 3Horn R A,Johnson C R. Topic in Matrix Analysis[M].New York:cambridge University Press,1991.
  • 4Ljiljana Cvetkovic. H-matrix theory and eigenvalue localization[J].Numerical Algorithms,2006.229-245.
  • 5Berman A,Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M].New York:Academic Press,Inc,1979.
  • 6Fang M Z. Bounds on eigenvalues of Hadamard product and the Fan product of matrices[J].Linear Algebra and Its Applications,2007.7-15.
  • 7Huang R. Some inequalities for the Hadamard product and the Fan product of matrices[J].Linear Algebra and Its Applications,2008.1551-1559.
  • 8Liu Q B,Chen G L. On two inequalities for the Hadamard product and the Fan product of matrices[J].Linear Algebra and Its Applications,2009.974-984.
  • 9Li Y T,Li Y Y,Wang R W. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices[J].Linear Algebra and Its Applications,2010.536-545.
  • 10Horn R A,Johnson C R. Topic in Matrix Analysis[M].Beijing:People′s Posts and Telecommunications Press,2005.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部