期刊文献+

基于支持向量机的酗酒脑电信号分类研究

Research on Classification of Alcoholism EEG Signals Based on Support Vector Machine
下载PDF
导出
摘要 酗酒会对脑认知功能产生严重损伤。为了检测长期饮酒人员是否有酗酒倾向问题,提出一种基于支持向量机的酗酒脑电信号特征分类识别方法。借助三类评估参数,实现了对健康者和酗酒者脑电信号定量分析。研究结果发现,能量评估参数是一种新的最佳评估分类因子,采用θ能量评估参数利用支持向量机能够对两类不同特征的脑电信号进行分类识别,识别精度最高达到90%。该方法能够为长期饮酒人员是否有酗酒倾向提供一种新的辅助检测方法,有助于提醒长期饮酒群体对健康给予关注。 Alcohol abuse can cause serious damage to brain cognitive function.In order to detect whether long term drinkers have a tendency to alcohol abuse,a feature classification and recognition method of alcoholic EEG signals based on support vector machine(SVM) is proposed.Quantitative analysis of EEG signals for healthy and alcoholics people is realized by using three kinds of evaluation parameters.The results show that θ-energy evaluation parameter is a new optimal classification factor.With theta-energy evaluation parameter,by using support vector machine,two kinds of EEG signals with different characteristics can be classified and recognized,and the recognition accuracy can reach 90%.This method can provide a new auxiliary detection method for the tendency of alcoholism of long-term drinkers,and is helpful for reminding long-term drinkers pay attention to health.
作者 丁尚文 王纯贤 Ding Shangwen;Wang Chunxian(Department of Basic Course,HeFei University of Technology,Xuancheng 242000,China;School of Mechanical Engineering,HeFei University of Technology,Xuancheng 242000,China)
出处 《自动化仪表》 CAS 2019年第11期95-98,共4页 Process Automation Instrumentation
基金 合肥工业大学学术新人提升计划A项目基金资助项目(JZ2016HGTA0685)
关键词 酗酒 脑电信号 支持向量机 功率谱 近似熵 径向基 极值 对偶 Alcoholism EEG signals Support vector machine(SVM) Power spectrum Approximate entropy Radial basis Extremum Duality
  • 相关文献

参考文献5

二级参考文献92

  • 1Mechtcheriakov S,Brenneis C,Egger K,et al. A widespread dis-tinct pattern of cerebral atrophy in patients with alcohol addictionrevealed by voxel-based morphometry [ J ]. J Neurol NeurosurgPsychiatry,2007,78(6):610-4.
  • 2Makris N, Oscar-Berman M, JafHn SK, et al. Decreased volumeof the brain reward system in alcoholism [ J ]. Biol Psychiatry,2008,64(3):192 -202.
  • 3Brand M, Labudda K, Markowitsch H J. Neuropsychological cor-relates of decision-making in ambiguous and risky situations [ J ].Neural Networks, 2006,19(8) : 1266 -76.
  • 4Jollant F, Lawrence N S, Olie E, et al. Decreased activation oflateral orbitofrontal cortex during risky choices under uncertainty isassociated with disadvantageous decision - making and suicidal be-havior[J]. Neuroimage, 2010,51(3) : 1275 -81.
  • 5Kim Y T, Sohn H, Jeong J. Delayed transition from ambiguous torisky decision making in alcohol dependence during Iowa GamblingTask[J]. Psychiat Res,2011,190(2 -3):297-303.
  • 6NoSl X, Bechara A, Dan B, et al. Response inhibition deficit isinvolved in poor decision making under risk in nonamnesic individ-uals with alcoholism[ J]. Neuropsychology, 2007,21 (6) :778 -86.
  • 7Verdejo-Garcfa A, P6rez-Garcla M, Bechara A. Emotion, deci-sion-making and substance dependence: a somatic-marker modelof addiction[ J]. Curr Neuropharmacol,2006, 4(1) :17 - 31.
  • 8Wrase J, Makris N, Braus D F, et al. Amygdala volume associat-ed with alcohol abuse relapse and craving[ J]. Am J Psychiatry,2008, 165(9) :1179 -84.
  • 9Pessiglione M, Seymour B, Flandin G, et al. Dopamine-depend-ent prediction errors underpin reward-seeking behaviour in humans[J]. Nature, 2006, 442(7106) ; 1042 -5.
  • 10Friston KJ,Josephs O,Zarahn E,et al.To smooth or not to smooth?Bias and efficiencyinf MRI ti me-series analysis. NeuroI m- age . 2000

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部