期刊文献+

显著性偏振参量深度稀疏特征学习的目标检测方法 被引量:4

Object Detection by Deep Sparse Feature Learning of Salient Polarization Parameters
原文传递
导出
摘要 基于偏振成像特点和深层特征分类需求,提出一种显著性偏振参量深度稀疏特征学习的目标检测方法。首先在偏振解析基础上构造显著性偏振参量图像作为检测源图像;然后在判别式字典对下对待检测图像进行稀疏特征学习,并以字典对作为分类器在卷积神经网络(CNN)框架下进行目标分类和定位;最后结合偏振成像探测实际应用需求,选择典型目标和应用场景进行数据采集和模型训练,并进行仿真验证。结果表明该方法在检测得分和平均检测精度上都比直接偏振方向方法有所提高,验证了其有效性,该方法对于有效提升偏振成像探测能力具有应用价值。 Based on polarization imaging characteristics and deep feature classification requirements,an object detection method based on deep sparse feature learning of salient polarization parameters is proposed.First,the salient polarization parameter image is constructed as the source image based on polarization analysis.Then the sparse feature of the image to be detected is learned by discriminant dictionary pair,and the object is classified and located by the dictionary pair which is used as the classifier in CNN framework.Finally,the typical object and scene are selected for data acquisition and model training according to the practical application requirements of polarization imaging detection,and some simulation experiments are conducted.The results show that the detecting score and average detection precision of the proposed method are improved at different degrees by comparing to the polarization direction detection methods and the effectiveness of this method is verified.The proposed method has application value for improving the detection ability of polarization imaging effectively.
作者 王美荣 徐国明 袁宏武 Wang Meirong;Xu Guoming;Yuan Hongwu(Institute of Information Engineering,Anhui Xinhua University,Hefei,Anhui 230088,China;Anhui Province Key Laboratory of Polarized Imaging Detecting Technology,Army Artillery and Air Defense Forces Academy,Chinese People′s Liberation Army,Hefei,Anhui 230031,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第19期126-136,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61379105) 安徽省高校自然科学研究重点项目(KJ2018A0587,KJ2019A0906) 中国博士后科学基金(2016M592961) 安徽省自然科学基金(1608085MF140)
关键词 成像系统 偏振参量 稀疏特征 显著性 深度学习 imaging system polarization parameter sparse feature saliency deep learning
  • 相关文献

参考文献4

二级参考文献84

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献232

同被引文献26

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部