期刊文献+

短文本相似性的改进及其在电商评论推荐中的应用 被引量:2

Improvement of Short Text Similarity and Its Application in E-Commerce Review Recommendation
原文传递
导出
摘要 在常用评论特征的基础上,提出了一种基于搜索引擎(如百度)的文本相似性方法获取评论与产品标题之间的相似性,并作为新的评论特征建立评论推荐模型。实验证明,引入评论与产品相似性特征可明显改进评论推荐机制的有效性,同时文本相似性评价的准确性可以借助搜索引擎得到较大提升。 Based on search engine,a text similarity method is proposed to obtain similarity features between comments and product titles.Combining with other features of comments,a comments recommendation model is established.Experiments show that adding similarity feature can significantly improve the effectiveness of the comment recommendation mechanism.At the same time,the accuracy of text similarity evaluation can be improved by means of search engine.
作者 潘浩 高英铭 潘尔顺 PAN Hao;GAO Ying-ming;PAN Er-shun(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《工业工程与管理》 CSSCI 北大核心 2019年第5期132-137,145,共7页 Industrial Engineering and Management
基金 国家自然科学基金资助项目(71672109)
关键词 评论推荐 文本相似性 搜索引擎 点互信息 指派问题 comments recommendation text similarity search engine point mutual information assignment problem
  • 相关文献

参考文献8

二级参考文献97

  • 1YE Qiang LI Yijun ZHANG Yiwen.Semantic-Oriented Sentiment Classification for Chinese Product Reviews: An Experimental Study of Book and Cell Phone Reviews[J].Tsinghua Science and Technology,2005,10(z1):797-802. 被引量:7
  • 2胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 3Kim S, Pantel P, Chklovski T, et al. Automatically assessing review helpfulness [C] //Proc of the 11th Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2006:423-430.
  • 4Liu J, Cao Y, Lin C, et al. Low-quality product review detection in opinion summarization [C] //Proe of EMNLPI CONLL'07. Stroudsburg, PA: ACL, 2007:334-342.
  • 5Tsur O, Rappoport A. Revrank: A fully unsupervised algorithm for selecting the most helpful book reviews [C] // Proc of the 3rd Int Conf on Weblogs and Social Media. Menlo Park, CA; AAAI, 2009:154-161.
  • 6Hong Y, Lu J, Yao J, et al. What reviews are satisfactory: Novel features for automatic helpfulness voting [C] //Proc of the a5th Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2012:495-504.
  • 7Danescu-Niculescu-Mizil C, Kossinets G, Kleinberg J, et al. How opinions are received by online communities: A case study on Amazon. corn helpfulness votes [C] //Proc of the 18th Int Conf on World Wide Web. New York:ACM, 2009: 141-150.
  • 8Tsaparas P, Ntoulas A, Terzi E. Selecting a comprehensive set of reviews [C ]//Proc of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2011: 168-176.
  • 9Lappas T, Crovella M, Terzi E. Selecting a characteristic set of reviews [C]//Proe of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2012:832-840.
  • 10Hu M, I.iu B. Mining and summarizing customer reviews [C] //Proe of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 20041 168- 177.

共引文献50

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部