摘要
输电线路发生故障时,故障电流信号中包含了大量用于故障检测的有效信息,由于大多数信号均具有非线性、非平稳性的特点,故难以从中充分提取故障特征,导致现有输电线路故障检测准确率较低。为此,提出了一种输电线路故障检测的新方法。该方法首先利用多小波的消噪性能对原始信号进行消噪,再利用集合经验模态分解(EEMD)对消噪后的信号进行自适应分解,得到一系列本征模态函数(IMFs),并基于排列熵(PE)原理从中提取故障特征向量训练用于故障检测的极限学习机(ELM)。PSCAD/EMTDC仿真结果表明,所提方法对输电线路不同类型故障检测所需时间短、准确率高。
Current signals of transmission lines contain a large amount of effective information for detection of fault.However,it is difficult to extract the fault features completely because of its characteristics of nonlinearity and non-stationarity,which leads to a problem of relatively low accuracy of fault type identification.In order to solve this problem,this paper proposes a new method for detection of transmission line fault.Firstly,EEMD method is used to adaptively decompose the signals into a series of intrinsic mode function(IMF),which are denoised by multi-wavelet method.Then,the fault features contained in IMFs are extracted by permutation entropy.Finally,The ELM classifier is obtained by training sets.The PSCAD/EMTDC simulation results show that the proposed approach is robust and fast for detection of different faults.
作者
周步祥
廖敏芳
潘晨
ZHOU Bu-xiang;LIAO Min-fang;PAN Chen(College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
出处
《水电能源科学》
北大核心
2019年第10期145-149,共5页
Water Resources and Power
关键词
输电线路
故障检测
消噪
集合经验模态分解
排列熵
极限学习机
transmission line
fault identification
denoising
ensemble empirical mode decomposition
permutation entropy
extreme learning machine