期刊文献+

The Decay Rate of Patterson–Sullivan Measures with Potential Functions and Critical Exponents

The Decay Rate of Patterson–Sullivan Measures with Potential Functions and Critical Exponents
原文传递
导出
摘要 Basing upon the recent development of the Patterson–Sullivan measures with a H¨older continuous nonzero potential function,we use tools of both dynamics of geodesic flows and geometric properties of negatively curved manifolds to present a new formula illustrating the relation between the exponential decay rate of Patterson–Sullivan measures with a H¨older continuous potential function and the corresponding critical exponent. Basing upon the recent development of the Patterson–Sullivan measures with a H¨older continuous nonzero potential function, we use tools of both dynamics of geodesic flows and geometric properties of negatively curved manifolds to present a new formula illustrating the relation between the exponential decay rate of Patterson–Sullivan measures with a H¨older continuous potential function and the corresponding critical exponent.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第12期1937-1944,共8页 数学学报(英文版)
基金 partially supported by NSFC(Grant Nos.11571207 and 11871045) the third author is partially supported by NSFC(Grant No.11871045) by the State Scholarship Fund from China Scholarship Council(CSC)
关键词 GEODESIC FLOWS Patterson-Sullivan measures CRITICAL EXPONENT Geodesic flows Patterson–Sullivan measures critical exponent
  • 相关文献

参考文献1

二级参考文献28

  • 1Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Trdy Mat. Inst. Steklov., 90, 1-235 (1967).
  • 2Bangert, V.: Mather sets for twist maps and geodesics on tori. Dynamics Reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., Wiley, Chiehester, 1988, 1 56.
  • 3Bolsinov, A. V., Taimanov, I. A.: Integrable geodesic flows with positive topological entropy. Invent. Math., 140, 639 650 (2000).
  • 4Bowen, R.: Entropy-expansive maps. Trans. Amer. Math. Soc., 164, 323-331 (1972).
  • 5Burago, D., Ivanov, S.: Riemannian tori without conjugate points are flat. Geom. Funct. Anal., 4, 259-269 (1994).
  • 6Butler, L.: Invariant metric on nilmanifolds with positive topological entropy. Geom. Dedi., 100, 173 185 (2003).
  • 7Chavel, I.: Riemannian Geometry: A Modern Introduction, Second Edition, Cambridge University Press, New York, 2006.
  • 8Dinaburg, E. I.: On the relations among various entropy characteristics of dynamical systems. Math. USSR Izv., 5, 337-378 (1971).
  • 9Eberlein, P., O'Neill, B.: Visibility manifolds. Pacific J. Math., 46, 45-109 (1973).
  • 10Glasmachers, E., Knieper, G., Ogouyandjou, C., et al.: Topological entropy of minimal geodesics and volume growth on surfaces. J. Modern Dynamics, 8, 75-91 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部