期刊文献+

我国铁路客运量短期预测模型修正及比较 被引量:6

Modification and Comparison of Short-term Forecasting Models for Railway Passenger Volume in China
下载PDF
导出
摘要 文章针对我国铁路客运量进行短期预测,首先分析现有常见预测模型的优点与不足,然后试图通过构造新的组合或修正模型,从而实现提高预测精度。在构建年度数据组合模型时,发现以偏最小二乘回归、主成分回归和岭回归为基础进行组合时,预测精度达到了最优;在构建季度数据模型时,首先通过修正的时间序列分解法与季节周期回归模型显著地提高了预测精度,然后以这两个模型为基础构造组合模型,预测精度进一步得到提高。 This paper forecasts the passenger traffic volume of China’s railway in the short term. Firstly, the paper analyzes the advantages and disadvantages of the existing common prediction models, and then tries to improve the prediction accuracy by constructing new combination or modification models. When the annual data combination model is being constructed, it is found that the prediction accuracy is optimal when partial least square regression, principal component regression and ridge regression are combined. In the construction of quarterly data model, the prediction accuracy is significantly improved by the modified time series decomposition method and seasonal cycle regression model. Then the combined model is constructed based on these two models and the prediction accuracy is further improved.
作者 周展 王文强 Zhou Zhan;Wang Wenqiang(School of Mathematics and Computational Science,Xiangtan University,Xiangtan Hunan 411105,China)
出处 《统计与决策》 CSSCI 北大核心 2019年第21期66-71,共6页 Statistics & Decision
基金 湖南省教育厅重点项目(18A049)
关键词 铁路客运量 预测 修正 比较 railway passenger traffic volume prediction correction comparison
  • 相关文献

参考文献8

二级参考文献52

共引文献82

同被引文献82

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部